A Novel Relevance Score for Unsupervised Retrieval with Large Language Models

Università degli Studi dell'Aquila / Italy

Context

Document Ranking is the task of returning a ranked list of results given a corpus of documents and a user query.

> Think of a classic Google Search, or a database search, or any Information Retrieval scenario.

Motivation

Most state of the art neural retrievers pool term embeddings into single-vector document representations.

This approach stems from SBERT [1] and has taken over Document Ranking with DPR [2] and sentence-transformers[3]

Motivation (2)

Collapsing information into single embedding representations inevitably leads to downfalls.

Among those, this research highlights the problems of undesirable ranking results and poor explainability.

Motivation (3)

> We will consider the following baselines:

MoE (Mean of Embeddings): the term embeddings are pooled into their mean

XoE (maX of Embeddings): the term embeddings are pooled into their max

> MoE is the default setting for state-of-the-art sentence transformers.

Methodology

To tackle these problems, we propose **DbU-Cloud**, a novel, densitybased Relevance score.

DbU-Cloud does not employ pooling, but rather considers both the Query's and the Document's sets of term embeddings.

Methodology (2)

DbU-cloud the relevance score of a set of embeddings with respect to another set of embeddings.

Methodology (3)

 $\bullet t_7$

Experimental Settings

- LLMs: All-Mpnet-base-v2, DistilRoBERTa, DPR
- **Corpora**: CISI, LISA, MS_MARCO, NFCORPUS

Results

	ALL-MPNET				DistilRoBERTa					DPR			
	MaP	R@10	MRR	DCG@10	MaP	R@10	MRR	DCG@10	N	ЛаР	R@10	MRR	DCG@10
XoE	0.160	0.082	0.551	1.400	0.145	0.090	0.549	1.519	0	.090	0.071	0.418	1.037
MoE	0.175	0.087	0.550	1.405	0.180	0.100	0.600	1.610	0	.110	0.096	0.448	1.115
DbU-Cloud	0.215	0.094	0.622	1.727	0.198	0.109	0.601	1.754	0.	.145	0.125	0.517	1.343

ALL-MPNET

DbU-Cloud outperforms MoE and XoE across all LLMs

Main Takeaways

- > We identified the main problems caused by the pooling mechanism in Document Ranking.
- We propose a novel Relevance Scoring method, called DbU-Cloud, that removes the pooling mechanism.
- > DbU-Cloud promotes density and similarity when computing relevance scores.
- > We tested it on multiple corpora and LLMs.

Results show that DbU-Cloud outperforms pooling across all models.

- > 1. SBERT: <u>https://arxiv.org/abs/1908.10084</u>
- > 2. DPR: <u>https://arxiv.org/abs/2004.04906</u>
- 3. Sentence-transformers: <u>https://huggingface.co/sentence-transformers</u>