Data-Driven Analysis of Gender Fairness in the Software Engineering Academic Landscape

Giordano d'Aloisio, Andrea D'Angelo, Francesca Marzi, Diana Di Marco, Giovanni Stilo, Antinisca Di Marco

Università degli Studi dell'Aquila / Italy

Abstract

In this work, we study the problem of Gender Bias in academic promotions in the Informatics and Software Engineering Italian communities.

We mine public data about role promotions and academic productivity to compute Disparate Impact, a formal definition of bias.

Overview

Literature Review

Analysis Description

Experimental Results

Gender Bias in Classic Academic Systems: A review

Gender Bias review (II)

Process

- Promotions
- Recruitment
- Productivity

Only 2 of the papers focused on Gender Bias in Productivity.

Privacy of the Data

- Public
- Private

Only 38% of the papers use Public data from trusted sources. Private data were usually collected through interviews or surveys.

Gender Bias review (III)

Gender Bias review (IV)

Our study aims to formally analyze the issue of gender bias in academic promotions in the Informatics and SE Italian communities.

$$
\xi
$$

We mined public data from trusted sources and included productivity metrics. We used formal bias definitions to analyze our results.

Overview

Literature Review

Analysis Description

Experimental Results

Data Gathering

First, we scraped publicly available data from official sources.

Career and affiliations data was obtained from the MIUR (Ministry of University and Research) and National Scientific Qualification websites.

Productivity and publication metrics were obtained via the Scopus API.

Public data from official sources

Data Pipeline

> Second, we merged the data from different sources.

We employed Regular Expression logic to split Full Names into Name and Surname and remove special characters.

We merged the two datasets and split the productivity metrics in order to obtain a time series of publications and citations for each record.

Data
Aggregation Pipeline

Data Pipeline (II)

\% Third, we filtered the resulting data.

The dataset D^{\prime} was split according to a sliding time window of fixed size (3years).

We only selected specific fields of research, related to Computer Science and Engineering.

We split the dataset into Informatics and Software Engineering and by Academic Role.

Data Pipeline (III)

Data Pipeline (IV)

\% The end results are 4 datasets, each divided into time windows:

Informatics Researchers and Associated ($\left.\mid \mathrm{NF}_{\mathrm{RA}}\right)$

Software Engineering Researchers and Associated ($\mathrm{SE}_{\mathrm{RA}}$)

Informatics Associated and Full ($\mathrm{INF}_{\mathrm{AF}}$)

Software Engineering Associated and Full ($\mathrm{SE}_{\mathrm{AF}}$)

Overview

Literature Review

Analysis Description

Experimental Results

Bias Metric

To compute the Bias in each dataset, we refer to the formal definition of Disparate Impact:

Disparate Impact (DI):

Disparate Impact compares the probability of having a Positive Outcomewhile being in the privileged or unprivileged group. Formally:

$$
D I=\frac{P\left(Y=y_{p} \mid X=x_{\text {unpriv }}\right)}{P\left(Y=y_{p \mid X=x_{\text {priv }}}\right)}
$$

> The closer this value is to 1 , the «fairer» the dataset.

Bias Metric (II)

To compute the Bias in each dataset, we refer to the formal definition of Disparate Impact:

Disparate Impact (DI):

Disparate Impact compares the probability of having a Positive Outcomewhile being in the privileged or unprivilegedgroup. Formally:

$$
D I=\frac{P\left(Y=y_{p} \mid X=x_{\text {unpriv }}\right)}{P\left(Y=y_{p \mid X=x_{\text {priv }}}\right)}
$$

Bias Metric (II)

To compute the Bias in each dataset, we refer to the formal definition of Disparate Impact:

Disparate Impact (DI):

Disparate Impact compares the probability of having a Positive Outcomewhile being in the privileged or unprivilegedgroup. Formally:

$$
D I=\frac{P\left(Y=y_{p} \mid X=x_{\text {unpriv }}\right)}{P\left(Y=y_{p \mid X=x_{\text {priv }}}\right)}
$$

Disparate Impact does not need a classifier to be computed, as it can be calculated on the dataset itself. We compute the probabilities by appropriately slicing the dataset.

Experimental Results

The SE Community appears to have more gender bias in the career promotion from Researchers to Associate Professors.

In both contexts, bias is steadily decreasing.

Experimental Results (II)

On the other hand, the SECommunity is much fairer w.r.t. promotions from Associate to Full Professors.

The peak in fairness was registered in 2020.

Main Takeaways

> We performed a Literature Review on the subject which highlighted several critical points;
. We built a joint dataset from several different official sources and processed it through a pipeline;
> We used a formal metric to show that the SE community is lagging behind in fairness for promotions from Researchers to Associate Professors, but is fair from promotions from Associate to Full Professors

Open Problems

. Expanding the study to other Areas and Countries (need public data from official sources);

Train a ML classifier to predict the Academic Position of a Researcher, study feature importance and possible bias related to gender;

Thank you for your attention

