Knowledge and Information Systems (2023) 65:3995-4020
https://doi.org/10.1007/s10115-023-01879-6

REGULAR PAPER

®

Check for
updates

Exploiting spatial relations for grammar-based specification
of multidimensional languages

Giuseppe Della Penna' (% - Sergio Orefice' - Andrea D’Angelo’

Received: 24 January 2022 / Revised: 13 April 2023 / Accepted: 16 April 2023 /

Published online: 9 May 2023

© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023, corrected
publication 2023

Abstract

As opposed to textual programming languages, multidimensional languages compiler con-
struction paradigms lack standardization. To this aim, in this paper we present the spatial
grammar (SG) formalism, a grammar model for multidimensional languages which has
string-like productions containing more general spatial relations other than string concatena-
tion, and we provide mapping rules to translate an SG specification into a translation schema.
In this way, the SG formalism inherits and extends to the multidimensional context concepts
and techniques of standard compiler generation tools like YACC.

Keywords Spatial knowledge - Multidimensional languages - Spatial relations -
Context-free grammars

1 Introduction

In the last decades, much research has been done to model spatial relations and a number
of formalisms have been provided (see Sect.2 for a brief survey) since, in general, spatial
composition rules are fundamental in representing spatial knowledge and in designing visual
systems, because a formal description of their structural characteristics is crucial to provide
a systematic base and avoid ad hoc implementations. In [10], we have proposed a framework
which uses a qualitative approach to represent spatial information and includes common
qualitative spatial relations such as topological (e.g. overlapping, adjacency, containment) and
directional (e.g. left, up) relations. Such formalism evolved in the PCT (Position-Connection-
Time) framework [11] that now integrates position, connection and spatio-temporal relations.
In particular, although most of the literature on spatial relations commonly relies on relations
based on the position of the involved objects, PCT also includes spatial relations where the
specific position of the objects is not relevant, as it happens in diagrammatic visual languages.
This reflects the two basic modalities that can be used to compose graphical objects:position-

B Giuseppe Della Penna
Giuseppe.DellaPenna@univaq.it

Department of Information Engineering, Computer Science and Mathematics, University of L’ Aquila,
L’ Aquila, Italy

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-023-01879-6&domain=pdf
http://orcid.org/0000-0003-2327-9393

3996 G. Della Penna et al.

Cardinal —> Left, Right, Up, Down

Position-Based

Overlap > Intersect, Include

Qualitative Spatial
Relation

Link-Plex, Link-Segment, Link-

on baaet > i —_—
¢ Link Contour

Fig.1 A fragment of the PCT spatial relation hierarchy

based orconnection-based that is by spatially arranging or by connecting them. So far, PCT
relations have been profitably exploited in several domains, e.g. to support visual information
extraction from visual documents (e.g. web pages, maps or biomedical images), [9], and to
specify touch screen gestures [12].

In this paper, we apply PCT to the visual language theory and use its spatial relations as
basis to define a grammar formalism, namely SG (spatial grammar), for the specification of
the syntax of multidimensional languages, conceived as sets of multidimensional sentences
composed of graphical objects arranged through spatial relations, as opposed to traditional
formal languages which are defined as sets of strings (sentences) over an alphabet of textual
symbols. SGs naturally extend context-free grammars for string languages by considering
new relations in addition to string concatenation. In particular, Fig. 1 shows the fragment of
the PCT spatial relation hierarchy that will be used within the SG formalism to describe the
syntax of multidimensional languages.

Moreover, to avoid the efforts that must be accomplished in the recognition of multidimen-
sional languages, we also present a methodology that allows to automatically translate SGs
into equivalent context-free grammars with semantic actions (i.e. translation schemas, [1]),
where such actions are calls to procedures that implement spatial relations. This allows to
generate the corresponding parser through standard compiler-compiler techniques and tools
like YACC [23].

In the practice, grammars for multidimensional languages, and in particular the proposed
spatial grammars, can be effective in several fields spanning from computer vision to image
analysis where, for example, they can assist or even perform better than machine learning.
As an example, shape recognition is usually performed as a multi-step process including
capture, pre-processing, feature extraction and recognition. Rule-based approaches (such
as grammar-based ones) may help, for example, in the recognition phase when a machine
learning approach has insufficient training data [5]. Indeed, in the case study presented
in Sect. 6, spatial grammars are used as an highly formalized, human-readable and easily
processable set of image (de)composition rules to assist traffic signs recognition, which is a
widely studied problem (see, for example, the recent works in [33]).

Moreover, the image recognition performed by spatial grammars is syntactic, since they
detect the image elements and their relations, and thus, the image semantic is derived through
syntactic reasoning as it happens, i.e. for the code written in a specific programming language.

@ Springer

Exploiting spatial relations for grammar-based... 3997

This may be also very important when an higher degree of precision is required and/or there
is the need to further reason on the image structure after recognizing its overall shape as, for
example, in biomedical applications [25].

On the other hand, most machine learning approaches perform image recognition "by
similarity" with respect to a training set, usually without classification explainability [4],
which can be very important in critical contexts, whereas the derivation of a spatial grammar
represent a formal, detailed explanation of the recognition process and its results.

Despite these advantages, often grammar-based approaches are not widely employed due
to their computational complexity (especially for highly expressive grammar formalisms,
e.g. graph grammars), if compared to data-based (statistical, machine learning, etc.) and less
powerful rule-based approaches based on simpler or ad hoc formalisms. For this reason in
the present paper the main focus is the ability to easily handle the grammars at application
level, possibly reusing classical tools for their recognition, making them actually usable in
many contexts.

The paper is organized as follows. Section 2 contains a brief related work focused on the
spatial relation literature. In Sect.3, we recall the basic concepts from the PCT framework,
in particular the definition of the spatial relations that will be used in the paper. Section4
illustrates the SG formalism showing how these grammars extend common context-free
grammars to multidimensional languages. Then, in Sect.5 we describe how to convert SGs
in equivalent translation schemas in order to use standard compiler generation tools for their
recognition, and in Sect. 6 we apply this methodology to a simple but significant real-world
case study. Finally, concluding remarks and further research issues are outlined in Sect. 7.

2 Related work

To begin, let us briefly describe the main qualitative spatial relation formalisms present in
the literature. Further references to topological and direction spatial relation formalisms can
be found, for example, in the extended survey presented in [6].

Commonly, such formalisms are classified in two main classes, i.e. topological and
direction. Topological relations describe qualitative spatial relations that are invariant under
topological transformations such as translation, rotation and scaling.

The N-intersection theory is one of the most widely recognized approach in this class. In
this framework, a region x is associated with three related point sets: the region interior x°,
its boundary dx and its exterior x~. Then, a relationship between any two regions x and y
can be characterized by a matrix defining the intersections between each pair of the sets x°,
dx,x~ and y°, dy, y~. Many formalisms derived from the N-intersection theory have been
presented, but the most well-known is the 9-Intersection Model (9-1M, see, for example, [7,
14, 15]), which can be used to define the relationships between all combinations of lines,
points and regions.

Also the Region Connection Calculus (RCC, see, for example, [30]), is used to describe
topological relations but, unlike the 9-intersection approach, takes regions rather than points
as a fundamental notion. Relations are defined in the RCC formalism starting from the
base connected relationship C(x, y), which holds if and only if the regions x and y share
a common point. A very large number of relations can be derived from C(x, y), e.g. the
eight relations disconnected, equal, partially overlapping, externally connected, tangential
proper part (with its inverse) and non-tangential proper part (with its inverse), which form
the well-known RCCS8 formalism.

@ Springer

3998 G. Della Penna et al.

On the other hand, direction relations still describe where an object is placed relative to
another one, but without considering situations where the two objects overlap. Depending on
the dimension of the objects involved, direction formalisms can be divided into point-based,
where objects are simplified into points, or extended-object, where object have a shape.

Two well-known examples of point-based direction calculi are the Oriented Point Relation
Algebra (OPRA, see, for example, [26, 28]), where the notion of point is extended to oriented
point and the Ternary Point Configuration Calculus (TPCC, see, for example, [27]), which
uses ternary relations, in contrast with the more common binary ones. Extended-object based
calculi are more complex, due to the involved object shapes. Thus, to simplify the process,
minimal bounding rectangles are often used as an approximation of the actual objects.

The Cardinal Direction Calculus [34] is the most well-known binary direction relation
calculus. An arbitrary basic CDC relation is a binary relation involving a target object and a
reference object, and a non-empty subset of the nine atomic relations N, NW, NE, W, O,
E, S, SW and SE, corresponding to the possible intersections of sub regions of the target
object with the 3 x 3 direction matrix [21] of the reference object.

Another well-known binary direction relation calculus is the Rectangle Algebra (RA)
[3], an extension of the Interval Algebra [2]. Objects in this formalism are restricted to be
rational rectangles, i.e. rectangles whose sides are parallel to the axes of some orthogonal
basis in a 2-dimensional Euclidean space. Relations between these objects are the 13 x 13
pairs of atomic relations which can hold between two rational intervals and can be used
to express directional relations but also topological relations such as disjoint and overlap.
Spatial information is represented by spatial constraint networks, i.e. constraint satisfaction
problems where variables represent rational rectangles and constraints are relations. This
model, though restrictive, is sufficient for applications in domains like architecture or GIS.

Multidimensional languages have been addressed in various forms in the literature.
Roughly speaking, such kind of languages introduce further relations between symbols other
than the usual sequential concatenation. Actually, most of the works address two-dimensional
languages, such as picture languages [19], whereas our proposal extends to a higher number
of dimensions, since the PCT framework supports 2-D spatial relations as well as connection
relations (see Sect.3), which are recalled in this paper, and also 3-D spatial relations and
temporal relations, although not yet addressed in our current grammar formalism.

One of the most general research works in this field is [8], where the authors define
relation grammars for specifying the syntax of visual languages and, more generally, of
multidimensional languages. The paper has some similarities with the approach presented
in this paper, notably both have context-free grammars as the starting point, and however,
the spatial grammar formalism defined here, being based on the already published PCT
framework, has a more well-defined basis and results simpler in the syntax, closer to the
common grammar format and thus easier to manipulate with standard tools.

On the other hand, several grammar formalisms such as graph grammars [16] have been
proposed in the literature for the specification of multidimensional languages. However,
studies on such formalisms have been focused on their expressive power, whereas their
practical uses, when applied to real-world graph-like data, result in excessive complexity
(see, for example, [17]). On the other hand, in this paper the main focus is the ability to
easily handle the grammars at application level, possibly reusing classical tools for their
recognition. For this reason, the grammar formalism presented in this paper is derived from
the usual context-free string grammars, which are well known and supported by a variety of
out-of-the-box software tools.

Finally, it is worth noting that the term spatial grammar has already been used in the
literature. For example, [24] discusses spatial and shape grammars (not necessarily context-

@ Springer

Exploiting spatial relations for grammar-based... 3999

(Folo)

Fig.2 Sample graphical objects

free) from an engineering point of view, but in a very generic context where the concept of
spatial relation in not detailed as in the PCT and, again, no supporting software is presented.

3 Background: PCT

In this section, we recall the basic notions concerning the PCT formalism, i.e. graphical
objects and spatial relations. An extensive characterization of the overall framework is given
in [10, 11].

3.1 Graphical objects
In the PCT framework, a graphical object is formalized as follows.

Definition 3.1 (Graphical object) A graphical object is formally defined as pairo = (C, A),
where

— C denotes the set of the points p € R? forming the external contour of o (which is
disjoint from its internal area), providing its shape.

— A is the set of the object attributes. Each attribute is a pair (n, v), where n is a property
name and v its value.

The contour C is used essentially for the spatial manipulation of the object. In particular,
C includes one or more feasible regions, namely Fi(C), ..., Fx(C), defined as follows.

Definition 3.2 (Contour feasible region) Given a contour C, a feasible region of C, denoted
by F;(C),is set F;(C) < C.

Feasible regions represent subsets of points on the contour where the spatial relations
are used in order to arrange graphical objects. As an abuse of notation, in the following we
shall write F; (o) to indicate the region F;(C). For example, Fig. 2 shows a graphical object o
with the overall contour as feasible region (conventionally denoted by Fy(0)) and a graphical
object o’ with particular points or parts of the contour as feasible regions.

@ Springer

4000 G. Della Penna et al.

Fig.3 Disjoint cardinal spatial

/
relations oUPo

YUM(o') S YDM (o)

o LEFT o TRM (o) <$LM(0’)

=
=

o DOWN o' & yum(o) < YpM (o)
=

o RIGHT o TRM(o') S TLM (o)

On the other hand, the attribute set A models non-spatial properties, i.e. visual or semantic
aspects like name, colour, font or latitude. Actually, spatial properties (e.g. the object width,
area) can be derived from the contour C and then are not included in A.

Note that PCT refers to graphical objects in R? that are regular, in the sense that they
do not contain holes and have a contour that can be modelled as a closed curve without
self-loops (simple curve). More details on this issue are explained in [10]. However, this
restriction defines a wide and significant domain, excluding only graphical objects with very
irregular shapes, which would be hard to handle and, often, of little practical interest.

3.2 Spatial relations

In the PCT framework, spatial relations are defined according to the following classification.
3.2.1 Cardinal

The basic cardinal (disjoint) spatial relations, i.e. LEFT, UP, RIGHT and DOWN, are defined
by means of four single-point feasible regions, namely Fi(0) = UM (0), F2(0) = DM (o),
F3(0) = LM(0) and F4(0) = RM (o) that represent, respectively, the set of upmost, down-
most, leftmost and rightmost points of the contour of the graphical object o.

In particular, if C denotes the contour of a graphical object o, then U M (0) can be defined

as [p e ClVp' € C, p’y < py]. The other regions DM (o), LM (0) and RM (o) can be for-

malized similarly. Then, given two graphical objects o and o', the cardinal spatial relations
are defined as in Fig. 3.

Note that these definitions refer to the canonical orientation of the Cartesian axes (i.e. the
x coordinate increases rightwards, and the y one increases upwards). Moreover, they use the
notation yy (o) to denote the y coordinate common to all the upmost points in the feasible
region U M (0). The meaning of the other notations x7.41(s), YpM (o) and X gp1(0) can be defined
analogously.

For example, Fig.4a shows a spatial arrangement between o and o’ (where the involved
feasible regions have been outlined) corresponding to the spatial relation LEFT. Here, the
LEFT relation models a spatial arrangement where the graphical object o is completely on
the left of the graphical object o’.

3.2.2 Overlap

Overlap relations model spatial arrangements holding between graphical objects with inter-
secting contours or internal points (e.g. “full inclusion” or “partial intersection”). The main
relations of this class are INCLUDE and INTERSECT, defined as in Fig.5.

The first relation INCLUDE models a spatial arrangement between o and o’ whenever all
the internal points of o’ are a subset of the internal points of o, i.e. 0’ is inside 0. On the other

@ Springer

Exploiting spatial relations for grammar-based... 4001

RM(o)

N

(a) LEFT (b) INTERSECT (c) LINK

v
w(o')

Fig.4 Examples of relations

o INCLUDE o < Inside(o’) < Inside(o)

o INTERSECT o’ < Inside(o) n Inside(0’) # &

Fig.5 INCLUDE and INTERSECT spatial relations

Jk >0

o LINK(F;(o),Fj(0o’)) o < A(Fi(0)) = A(F; (o))

Il
B

Fig.6 LINK connection spatial relation

hand, the INTERSECT relation holds whenever at least one of the internal points of o’ is also
an internal point of o, i.e. the two objects are (partially) overlapping.

For example, Fig. 4b shows a spatial arrangement between o and o’ corresponding to the
spatial relation INTERSECT.

Of course, the INCLUDE and INTERSECT relations, applied together with appropriate
constraints, would be sufficient to express any other kind of spatial overlapping (see [10]).

3.2.3 Connection

Connection relations allow to relate graphical objects which are logically connected, regard-
less their position or spatial arrangement. Unlike cardinal or overlap relations, connection
spatial relations are explicit relations, in the sense that they have a visual representation that
conveys the link semantics. Conventionally, a link is represented by a polyline connecting
two contour points of two graphical objects.

Formally speaking, the LINK relation is defined as in Fig. 6. This definition uses a value
A(F;(0)) € N, which associates a number to each feasible region of a graphical object. This
value is zero whether the region is not involved in any connection; otherwise, it is an integer
greater than zero. Intuitively, two graphical objects o and o are linked if two of their feasible
regions share the same nonzero A-value, i.e. 3, j, k > 0, A(F; (0)) = A(F;(0")) =k

An example of basic LI N K relation is shown in Fig. 4c, where the connection between
two points of the regions Fj(0) and F4(0') is explicitly depicted as a polyline between two
arbitrary points of such regions.

In [10], the connection relations formalization includes further issues like the link direc-
tion or constraints on the involved feasible regions (i.e. single points, parts of the contour or

@ Springer

4002 G. Della Penna et al.

whole contours). In particular, three sub-types of connection spatial relations corresponding
to the above constraints can be derived as shown in Fig.7: in LINK-PLEX, the connected
feasible regions are single points of the contour, in LINK-SEGMENT, they are contour seg-
ments (contiguous subsets of points), and in LINK-CONTOUR, they coincide with the overall
contour of the objects.

4 Spatial grammars

Spatial grammars (SGs) extend context-free grammars including more general spatial rela-
tions other than the string concatenation, in order to specify multidimensional languages.

4.1 Definition of spatial grammar

Spatial grammars (SGs) preserve the classic components of common context-free grammars,
in particular the string-like format of the right-hand side of the productions. Actually, in the
paper, we conceive the term context-free as only referring to the form of grammar rules. A
discussion on the meaning of context-freeness for high-dimensional languages is out of the
scope of this work. This issue is addressed, for example, in [32].

As anovelty, spatial grammars are characterized by the following distinguishing elements:

— grammar symbols (terminals/non-terminals) become graphical objects as conceived in
PCT. In particular, terminal graphical objects are the actual language objects forming the
sentences, whereas non-terminal ones are fictitious objects representing fragments of the
overall spatial arrangement modelled by a sentence;

— spatial relations are introduced in the right-hand side of the production to relate the
grammar symbols;

— the linearity of the right-hand side of a production X — xjx3...x, is broken by an
appropriate use of spatial relations that are not forced to relate x; with x;_1;

— productions can include anchors in order to define the properties of the left-hand non-
terminal graphical object by suitably combining the properties of the right-hand symbols.
In particular, anchors are used to derive the contour and the feasible regions of the left-
hand graphical object from the ones of the right-hand objects.

In order to accomplish these issues, a spatial grammar has five components formalized as
follows.

Definition 4.1 (Spatial grammar) A spatial grammar is a quintuple SG = (N, T, S, P, R)
where N is a finite set of non-terminal graphical objects, T is a finite set of terminal graphical
objects, with NN'T = (, S € N is the grammar start symbol, R is a finite set of spatial
relation identifiers, and P is a finite set of productions of the form

X > xREL (x5 ... REL"',_yx,
In each production,

— the head X is a non-terminal graphical object, and each x; on the right-hand side is a
graphical object belonging to N U T’;

— each REL,; is a spatial relation identifier belonging to R, where the apex j; means that
the spatial relation R E L; holds between x; _j; and x; 1 1;

— the element / labelling the production arrow is the “anchor” of the production and has
the form I = ({ky, ..., kn}, Fdy, ..., Fd;), withm < n.

@ Springer

4003

Exploiting spatial relations for grammar-based. ..

suonera1 feneds uonoduuods paziernads £ b4

£ ((,0)01(0)0u1)NIT © < £ HNOINOOD-MNIT ©
{l.a‘] 3 |(z)°L} = (,0)%d
g vﬁhwwﬁm_,%ww\w \usﬁwvw_m < 0 ((,0)5 (0)') INTIWOAS-MNIT ©
v,o ((,0)d (0)%d)MNIT ©
{ omv \wwmwnu \%WE
A A £ ((,0)5 “(0)') XaTd-XNIT ©

1°0] 2 ,»‘PE
1

gl
v, o ((,0)d () d)MNIT ©

pringer

Qs

4004 G. Della Penna et al.

The non-terminals of a spatial grammar are actually “fictitious” graphical objects, since
they have no real visual representation, like it happens for terminal grammar symbols, but
they are syntactically manipulated as formal graphical objects according to Definition 3.1.
Therefore, we need a way to derive their contour and possibly their feasible regions: this is
accomplished through the anchor I of a production, which describes how to relate its head
X to the external.

In particular, in the anchor I, the expression {ki, ..., k;} is a set of natural numbers
pointing to the right-hand side grammar symbols and indicating that the contour of the non-
terminal X is the convex hull of the objects x, , .. ., X, (thatis, the minimum n-sided convex
polygon that completely circumscribes such objects). Note that if this part of the anchor is
omitted, we assume that it contains exactly all the indices of the right-hand grammar symbols.

On the other hand, each Fd; is afeasible region derivation expression of the form F; (X) =
Fj(xk;). Such an expression means that X has a feasible region F; (X) which is the same as
the feasible region F; (xi;) of the grammar symbol xx; . Note that, for the sake of simplicity, if
no feasible region derivation expression is present in the anchor, we assume that the feasible
regions of X are exactly all the feasible regions of the right-hand side grammar symbols.

4.2 Language of a spatial grammar

To complete the characterization of the SG formalism, let us give some definitions extending
the classic formal language theory, in order to get the notion of language generated by a
spatial grammar SG = (N, T, S, P, R).

Definition 4.2 (One-step derivation) Let a AB (with o, 8 € (NUTUR)*,A € N) be a
string composed by terminal and non-terminal symbols and spatial relation identifiers, and
A — y aproduction. Then, A = «[y];B is a one-step derivation.

Definition 4.3 (Derivation)Ya € (NUT U R)*, leta =* a. If « =* B and B = y, then
a="y.

Of course, during the derivation process, references to feasible regions of an expanded
non-terminal symbol change, since they are mapped to those of the symbols deriving from
that expansion, according to the feasible region derivation expressions in the corresponding
production anchor. This aspect will be clarified in the examples at the end of this section.

Definition 4.4 (Sentential form) If S =* y, we call the string y a sentential form.

Definition 4.5 (Terminal sentential form) Let y be a sentential form. If each grammar symbol
in y is a terminal, we call y a terminal sentential form.

A terminal sentential form models a family of spatial arrangements, and therefore of visual
dispositions, satisfying the spatial relations included in the sentence. Indeed, a graphical
object may be placed in a number of different ways with respect to another, still laying, for
example, on its left.

Therefore, in order to map each terminal sentential form into a specific visual disposition,
i.e. a multidimensional sentence, we need to introduce a further element, i.e. the layout
operator fr, ,, which needs to know the specification of the spatial relations contained in R
and the coordinates of a specific point p on the Cartesian plane that will be used as starting
point for the object disposition.

Once applied to a terminal sentential form y, fr, ,(y) produces a set {(0;, (x;, y;))} where
o; € T and (x;, y;) denotes a specific point on the Cartesian plane. This set includes exactly

@ Springer

Exploiting spatial relations for grammar-based... 4005

=

(a) (b)

Fig.8 Two possible visual dispositions for the terminal sentential form of Example 4.1

all the graphical objects o; contained in y, which are placed on the Cartesian plane so that
XLM(0o;) = Xi and yya;) = yi (i.e. roughly speaking, x; and y; represent the leftmost and
uppermost coordinate of the object, respectively). The accomplished disposition of course
satisfies the definition of the spatial relations in y.

To conclude, the language generated by a spatial grammar SG, i.e. L(SG), is the set of
multidimensional sentences defined as follows.

Definition 4.6 (Language of a SG) Let SG = (N, T, S, P, R) be a spatial grammar and
fr,p alayout operator. The language generated by SG with respectto fr , is L(SG| fr,p) =
{fRpWIS ="y}

Note that, due to the presence of spatial relations into the spatial grammar productions,
a derivation may lead to a terminal sentential form y that the layout operator fg , cannot
convert into a multidimensional sentence since it is not possible to arrange the graphical
objects of y according to the involved spatial relations. We say that such derivation does
not contribute to the language and, in that case, fr, ,(y) is undefined. Similarly to useless
symbols in canonical context-free grammars, we call these derivations useless derivations.
This issue will be better illustrated in Example 4.3.

Example 4.1 As a first example, let us consider the following spatial grammar productions:

S— BLEFT o
B —q3) 0 UPo" LEFT™! 0"

Applying two one-step derivations starting from the start symbol S, we obtain the following
derivation:

S=BLEFT o

/ /" -1
= [0 UP 0" LEFT™'0"] 3, LEFT 0

Figure 8a, b shows two possible visual dispositions that may be represented by the final
terminal sentential form y = [0’ UP o’ LEFT ™! 0”/]({1,3}) LEFT o. Indeed, in each of
them, o’ is above 0", 0’ is on the left of 0””, and both o', 0" (as required by the anchor {1, 3})
are on the left of o.

As explained above, applying a proper fg_ p, it is possible to obtain the unique correspond-
ing multidimensional sentence contained in the language. For instance, in this case choosing a

@ Springer

4006 G. Della Penna et al.

out(Cy)

Fig.9 Multidimensional sentence for Example 4.2

fr,psuchthat fr ,(y) = {(0, (12, 12)), (o', (1, 12)), (0", (14, 6)), (0", (8, 12))} we obtain
exactly the multidimensional sentence corresponding to the visual disposition shown in
Fig. 8b.

Example 4.2 Let us consider another example including connection relations, referring to the
following grammar and derivation:

S - x(UPALINK — PLEX(outT(x),in(Cy))) Cy

(UP ALINK — PLEX(out F(x), in(C2)))™' C»
Ci —;y(UPALINK — PLEX (out(y), in(z))) z
Cr— w

where I = (in(Cy) = in(y), out(C1) = out(z)). Then,

S=x (UPALINK — PLEX (outT (x), in(C1))) Ci
(UP ALINK — PLEX (outF(x),in(C2))~! C,
= x(UPALINK — PLEX(outT (x),in(y)))
[y (UP ALINK — PLEX (out(y), in(z))) z;
(UP ALINK — PLEX (outF(x), in(C2)))™" C,
= x(UPALINK — PLEX(outT (x),in(y)))
[y (UPALINK — PLEX (out(y), in(z))) zl;
(UP ALINK — PLEX (outF (x), in(w))))”' w

Applying a specific layout operator (which properly translates the link relations to common
flowcharts-style polylines) to the final terminal sentential form of this derivation, we obtain
the multidimensional sentence depicted in Fig.9, which of course satisfies the constraint
required by the involved spatial relations.

@ Springer

Exploiting spatial relations for grammar-based... 4007

Example 4.3 To show an example of useless derivation, let us slightly modify the grammar
fragment of Example 4.1 as follows.

S —> BLEFT o INCLUDE 'h
B =3y o UPo" LEFT™' 0"

Again, starting from the start symbol S, we obtain the following derivation:

S=*[o"UPo" LEFT' 0"] 5, LEFT 0o INCLUDE 'h

Actually, this terminal sentential form does not model any semantically consis-
tent spatial arrangement, since the object i cannot be included in the sub-expression
[0/ UP o' LEFT™! 0/”]({1’3}), whose contour includes two disjoint objects. Hence, the
derivation that produced this terminal sentential form is useless and will not contribute to the
language generated by the spatial grammar containing this fragment.

5 Automatic parser generation

Although multidimensional languages are clearly useful in the practice (to further clarify this
point, we will introduce a real-world case study in Sect. 6), their recognition is, in general,
computationally complex, and this limits the applications of these formalisms in the practice.

However, SGs have been defined to offer a strong formal background to applications, and
therefore, their recognition is computationally affordable. Indeed, in this section we show a
methodology to convert a spatial grammar into an equivalent translation schema that, once
generated, may be fed to standard compiler—compiler tools such as YACC [23], Bison [20],
AntLR [29] or JavaCC [22] to obtain a fully functional recognizer.

This methodology can be accomplished in two steps, as described in the following sections.
Note that, currently, the methodology can not be applied to inherently recursive grammars.
However, it can be applied to all the other spatial grammars, e.g. by removing possible left
recursion through the standard techniques used for context-free grammars. In the conclusions
section, we will discuss how we plan to handle also inherently recursive grammars in the
next version of our methodology.

5.1 From spatial grammars to string grammars

In this section, we illustrate the algorithms and the concepts used to linearize the spatial
formalism by merging the spatial relations into the grammar symbols. In this way, the resulting
string grammars will contain terminal and non-terminal symbols of the form REL_x and
REL_X that we shall call spatial grammar symbols from now on.

Before starting the conversion, it is necessary to apply a preliminary transformation of the
source spatial grammar. The Normalize algorithm (1) ensures that each non-terminal symbol,
with the exception of the start symbol, is present on the left-hand side of a single production.
To accomplish this, it introduces new non-terminal symbols and duplicates some productions
if necessary.

Of course, this normalization may strongly increase the size of the grammar. However, if
the input grammar is not inherently recursive, it always terminates.

@ Springer

4008 G. Della Penna et al.

Algorithm 1 Normalize

Input: A spatial grammar SG = (N, T, S, P, R).
Output: A spatial grammar SG’.

Procedure:
1. Consider the subsets of productions having the same left-hand side, excluding the start symbol S. For
each subset {X — «1,..., X — ap}:
(a) introduce n new nonterminal symbols {X1, ..., X, }, one for each production, and rename the left-
hand symbols accordingly, i.e., {X| — a1,..., Xy = o}
(b) replace each production of SG where the non-terminal X appears in the right-hand side with a set of
productions where the instances of X are replaced with all the possible combinations of { X, ..., X, }.

That is, if X appears k times, the production is replaced with n* new productions.

2. Iterate this process until there are no new subsets of productions having the same left-hand side.

As an example, let us consider a spatial grammar containing the following three produc-
tions

X — o
X —> a
Y - aXBXy

Applying the Normalize algorithm, this fragment becomes

X] —]
Xz — 2
Y — aX18X1y
Y — aX18Xay
Y — O{XzﬁX])/
Yy — O(XzﬁXz)/

In the next iteration, the resulting fragment will be

X] —]
Xz — 2
Yl —> Oleﬂxl)/
) - aX18Xay
Y3 — O{XzﬁX])/
Y4 —> O{X2,3X2)/

At this point, the process stops since there are no more productions with the same left-hand
side.

Now, we can start the transformation process with the RelPrecede algorithm (2) that,
applied to a non-terminal A, calculates the set of spatial relations that can appear immediately
to the left of A in some sentential form, that is, the set of spatial relations from which A can
be reached.

Example 5.1 Let us consider the following spatial grammar:

S —> AUPB

A —>x LEFT Yy

A— 7

B— wUPhKRIGHT? f

@ Springer

Exploiting spatial relations for grammar-based... 4009

Algorithm 2 RelPrecede

Input: A normalized spatial grammar SG = (N, T, S, P, R).
Output: For each non-terminal A of SG, the set of spatial relations Rel Precede(A).
Procedure:

1. If the start symbol S of SG appears in the left-hand side of a single production, add RELSP to
RelPrecede(S), where RELSP is a fake spatial relation denoting the starting point of the multi-
dimensional sentences generated by S. Otherwise, if S it appears k times, addthe RELS P; withi = 1...k
to Rel Precede(S).)

2. For all productions A — ; & REL' B B,add REL to Rel Precede(B).

3. For all productions A — ; B «, add the content of Rel Precede(A) to Rel Precede(B).

Once normalized, the grammar becomes

S - A UPB
S — A UPB

Ay =2 x LEFT y

Ay — 2

B — wUPhKRIGHT? f

Now, the RelPrecede algorithm calculates the following sets

RelPrecede(S) ={RELSP|,RELSP,}
RelPrecede(A1) = {RELSP;, RELSP,}
RelPrecede(Ay) = {RELSP;, RELSP,}
Rel Precede(B) = {UP}

Before presenting the next algorithm Spatial_to_String (3) that implements the translation
of the multidimensional spatial formalism into a string one, we need to define a function that
joins spatial relations and grammar symbols into new merged grammar symbols, i.e. spatial
terminals and spatial non-terminals. This function is defined as follows.

Definition5.1 Let « = REL; a;...REL; a; be a sequence of spatial relations
and grammar symbols of a spatial grammar. Then, we define X(«) as the sequence
REL|_a;...RELy_ay.

As an example, if « is the sequence UP x RIGHT y DOWN z, then X(x) =
UP_x RIGHT_y DOWN _z.

Algorithm 3 Spatial_to_String

Input: A normalized spatial grammar SG = (N, T, S, P, R).
Output: A context-free grammar G.
Procedure:
1. For each production A — jXxae P,withx €e NUT, A # S, insert in G the context-free productions
REL;_A —; REL; x ¥(a), foreach REL; € RelPrecede(A).
2. If there are k productions of the start symbol S, i.e., S = Xi o, i = 1..k, insert in G the context-free
productions RELSP; _S — j, RELSP; _x (o).

@ Springer

4010 G. Della Penna et al.

Example 5.2 The spatial grammar of Example 5.1 is transformed by the Spatial_to_String
algorithm into the following context-free grammar.

RELSP,_S — RELSP,_A,UP_B
RELSP, S — RELSP,_ A, UP_B
RELSP|_A; —> RELSP|_x LEFT_y
RELSP,_Ay — RELSP, z

UP_B — UP_wUP_h RIGHT?*_f

Note that the grammar was simplified by removing the useless productions having
RELSP_Aj and RELSP,_A| on the right-hand side.

Clearly, after this first step of the methodology, the current, intermediate string grammar,
is no more equivalent to the original spatial grammar. Indeed, the terminal symbols of the
source language have been embedded within spatial terminals. Moreover, the original start
symbol of the spatial grammar has been split into multiple different spatial non-terminals.
In the next step of the methodology, both terminals and start symbol of the original spatial
grammar will be properly restored.

5.2 From string grammars to translation schemas

In this section, we illustrate the algorithms and the concepts used to convert a string grammar
G as obtained by the above step into a canonical translation schema 7 S, which is equivalent
to the original spatial grammar SG. This is accomplished by including in the translation
schema suitable semantic actions which simulate the spatial relations in SG.

The Rellnside algorithm (4), applied to a generic spatial non-terminal R E L_x, calculates
the set of terminals that can be generated by the grammar productions having R E L_x on the
left-hand side, and that are pointed by the corresponding anchors. As an extension, Rellnside,
applied to a spatial terminal, returns the terminal itself.

Algorithm 4 Rellnside

Input: A context-free grammar G obtained from Algorithm 3.
Output: For each spatial terminal or non-terminal RE L_x in G, the set of spatial relations RelInside(x).
Procedure:

1. for each spatial terminal symbol REL_x, RELINSIDE(REL_x) = {x}

2. for each production REL_A —; REL|_xj ... RELy_xp, for each spatial symbol REL;_x; appear-
ing on its right-hand side and pointed by the anchor j (remember that if the anchor is not present,
we suppose it to contain all the indices 1...n), put in RELINSIDE(REL_A) all the contents of
RELINSIDE(REL; x;)

Example 5.3 The algorithm above, applied to the spatial non-terminals of the string grammar
in Example 5.2, produces the following sets:

Rellnside(RELSP,_S) = {y,w,h, f}
Rellnside(RELSP,_S) = {z,w,h, f}
RellInside(RELSP_A1) = {y}
RelInside(RELSP>_A>) = {z)
Rellnside(U P_B) = {w,h, f}

@ Springer

Exploiting spatial relations for grammar-based... 4011

Finally, algorithm Grammar_to_TranslationSchema (5) creates a translation schema
where the right-hand symbols are interleaved by semantic actions that, in our case, are
function calls implementing the spatial relations. In particular, such functions may check
that the given relations hold between the parameter objects: otherwise, they may stop the
parsing or instruct the parser to backtrack (e.g. with constructs like the semantic lookahead
[22]).

Algorithm 5 Grammar_to_TranslationSchema

Input: A context-free grammar G = (N’,T’, S, P/) obtained from the spatial grammar SG =
(N, T,S, P, R) through Algorithm 3, and the Rellnside sets generated by Algorithm 4.
Output: A translation schema TS = (N”, T”, S”, P") equivalent to SG.
Procedure:
1. LetTS = (N'U{S}, T, S, P"") be atranslation schema, i.e., a context-free grammar where the productions
may contain (sets of) actions mixed with the grammar symbols.

2. Forall productions p’ = REL_A — REL{l_xl . RELik _x; € P/, insertacorresponding production

p” in P” with the same left-hand symbol (REL_A) and a right-hand side built as follows. For all
iell,..., k],

(@ if i > 1, append to the right side of p” the set of actions A =
{REL,-(y, 2)|y € Rellnside(x;—j;).z € Rellnside(xi)}

(b) if x; € T, append it to the right side of p”, otherwise append RE L{ T x;.

3. Finally, for all the non-terminals RELSP;_S € N’, add the production S — RELSP;_S to P".

Example 5.4 The algorithm above, applied to the spatial grammar obtained in Example 5.2
and the sets of relations Rellnside from Example 5.3, produces the following grammar:

S — RELSP;_S

S — RELSP, S

RELSP,_S — RELSP,_A 1 {UP(y,w)}{UP(,h)}{UP(y, /)}UP_B
RELSP, S — RELSP,_ A {UP(z,w)}{UP(z,h)} {UP(z, f)}UP_B
RELSP,_A; -2 x {LEFT(x,y)}y

RELSP,_Ay) — z

UP_B — w{UPw,h)} h {RIGHT (w, f)} f

which is equivalent to the original spatial grammar in Example 5.1 since it produces an
equivalent language.
Indeed, the spatial grammar produces the following terminal sentential forms:

1. zUP [wUP h RIGHT? f]
2. [x LEFT yljy UP [wUP h RIGHT? f]

On the other hand, the translation schema above has the following terminal productions:

1. z{UP(z, w)} {UP(z, W)} {UP(z, f)} w {UP(w,)} h {RIGHT?(w, £)} f
2.x {LEFT(x,y)} y {UP(y,w)} {UP(,m} {(UP(, N} w {UP(w,h)}
h{RIGHT (w,)} f

Note that, in the translation schema actions, the spatial relations have no apex, since
their actual arguments have been resolved by the algorithm. If we suppose to embed in the
spatial actions of the translation schema the same semantics of the layout operator f%, ,, then

@ Springer

4012 G. Della Penna et al.

SGGrammar SGProduction

Grammar Production
CFProduction Nonterminal

Terminal

Symbol

ReIPrecede
Relation

TSProduction Action

SpatialToString

Translator CombinedSymbol
RelFollow

Rellnside
GrammarToSchema

Fig. 10 A simplified class diagram for the algorithm implementation and the grammar modelling structures

the language L(G]| fg,,) will be the same accepted by the translation schema productions.
Indeed, it is easy to see that the semantic actions in the translation schema check that all the
spatial relations in the corresponding terminal sentential form hold.

5.3 Implementation

In order to extensively test the complete spatial grammar to translation schema process,
all the algorithms described have been implemented in Java, trying to maintain the closest
resemblance between the pseudo-code given in the paper and the actual code, as a further
way to check the implementation validity. Moreover, the library contains a set of classes to
model context-free grammars, spatial grammars and translation schemas. All the classes have
pretty-printing routines that can be used to output the corresponding grammar structures in
a human-readable format that is very similar to the canonical grammar notation. Figure 10
shows a simplified view of the overall class library, whose full source code is publicly available
in the author’s GitHub repository [13].

The user can define a source spatial grammar using a set of helper functions, pass such
grammar to the algorithm and then analyse the resulting translation schema via code or simply
print it to the console. However, the context-free and spatial grammar classes are also able
to load the grammar definition from a file. To this aim, we defined a simple JSON-based
grammar format that can be both easily written by a human and read by the machine.

@ Springer

Exploiting spatial relations for grammar-based... 4013

As an example, the following file defines the same grammar of Example 5.1:

"terminals": ["h", "f", "x", "y","z","w"],
"nonterminals": ["A", "B", "S"],

"start": ["S"],

"productions": [

{"s": [[],"A",{"UP":1},"B"1},

{*a": [[2],"x", {"LEFT":1},"y"1},

{"a": [[1,"z"1},

{"B": [[],"w",{"UP":1},"h",{"RIGHT":2},"£"]}

]

If we run the translator on the input above, we obtain the following diagnostic output
showing all the intermediate results that can be easily compared with the examples of the
corresponding algorithms included in the previous section.

Input Spatial Grammar:
S -> A UP B

A ->[2] x LEFT vy

A -> z

B -> w UP h RIGHT"2 f

Normalize

S -> Al UP B

S -> A2 UP B

Al ->[2] x LEFT vy

A2 -> z

B -> w UP h RIGHT"2 f

** RelPrecede:
{Al=[RELSP1, RELSP2], A2=[RELSP1, RELSP2], B=[UP], S=[RELSP1l
, RELSP2]}

____________ Spatial to String Grammar
RELSP1_S -> RELSP1_Al UP_B

RELSP2_S -> RELSP2_A2 UP_B

UP_B -> UP_w UP_h RIGHT"2_f

RELSP2_A2 -> RELSP2_z

RELSP1_A1l ->[2] RELSPl1_x LEFT_y

** RelFollow:

{UP_B=[RELS$], RELSP2_A2=[UP], RELSP1_S=[RELS$], RELSP2_S=[
RELS$], RELSP1_Al1=[UP]}

** RelInside:

{up_B=[w, h, f], RELSP2_A2=[z], RELSP1_S=[y, w, h, f1,
RELSP2_S=[z, w, h, f£], RELSP1_Al=[y]}

Finally, the last step outputs the following final translation schema, which is identical to
one of Example 5.4:

@ Springer

4014 G. Della Penna et al.

StartSymbol -> RELSP1_S

StartSymbol -> RELSP2_S

UP_B -> w {UP(w,h)} h {RIGHT(w,f)} £
RELSP2_A2 -> z

RELSP1_S -> RELSP1_Al {UP(y,w)}
RELSP2_S -> RELSP2_A2 {UP(z,w)}
RELSP1_Al -> [2] x {LEFT(x,y)} ¥y

{UP(y,h)} {UP(y,f)} UP_B
{UP(z,h)} {UP(z,f)} UP_B

Note that the implementation actually removes all the useless productions from the output
grammar, in particular after the first step (spatial grammar to string grammar). On the other
hand, the algorithm described in Sect.5 has not been optimized in this way, to make it as
simple as possible to describe.

6 A case study

In this section, we show a simple real-world example where the spatial grammars and the
ability to transform them in YACC-compatible translation schemas can be useful to accom-
plish concrete tasks. Indeed, fast, standard compilers or interpreters, as the ones that can be
generated through YACC or similar tools, can be useful in many applications.

Understanding traffic signs is a very important task for self-driving cars and, in general,
for software assistants embedded in modern cars. Therefore, researchers have been studying
this task for a long time (see, for example, [18, 33] for two recent surveys in this argument),
which is often achieved using ML-assisted image recognition algorithms trained using the
sign images. However, traffic signs are not generic, complex pictures, but rather have a
very simple structure, composed by basic figures (e.g. triangles for warnings, circles for
regulatory signs, etc.) combined with a predefined set of standard symbols. Indeed, traffic
signs are intentionally designed with particular colours and shapes which make them easy
to recognize, so the most reliable way to detect a sign should be using the colour and shape
information [18]. This suggests that (context-free) grammars may be a more suitable way
both to compactly specify a wide range of traffic signs and to implement lightweight traffic
signs recognizers. Clearly, signs are images, so we need a spatial grammar to define them.

In particular, the grammar exploits the structure recalled above to define each sign by
means of basic elements such as geometric shapes, numbers, icons and arrows composed
using spatial relations. Such basic, simple elements would be easy to visually recognize using
traditional visual matching algorithms: as an example, ML can be exploited in this task, but
with much lower complexity and higher precision, since the recognizer must be trained to
understand only a small number of simple shapes.

Once the basic shapes and their position have been detected, the spatial grammar composi-
tion rules can be matched against them (through the feasible regions that are easily derivable
from the objects’ position and contour) in order to quickly decode the sign meaning.

The grammar derivation for a sign constitutes a formal proof of its recognition process
making it more explainable. Moreover, grammars are very robust, and their use may dras-
tically decrease the number of classification errors that may arise from the use of neural
networks in the overall process [35].

A spatial grammar fragment which models a set of common traffic signs is shown in
Fig. 11. In the grammar, the non-terminal W produces warning signs, F' regulatory signs
indicating prohibited actions and R mandatory actions. The figure uses visual symbols to
represent the grammar terminals in order to make it easier to understand.

@ Springer

Exploiting spatial relations for grammar-based... 4015
Fig. 11 A fragment of the traffic
signs spatial grammar S - W
S - F
S - R
W — Cw INSIDE A
F — Cp INSIDE O
F - 0
R — CrINSIDE @
Cw — 1|
Cr — CFB
Cr — J INTERSECT Cpp
Cr — Cpp
Crp — N
Crp — NINSIDE »«
N — numbers
Cpp — INTERSECT @
Cg — A
A — =
A V0 R = T T

O

Two-way troffic No vehicles No porking Proceed inthis direction

Fig. 12 Terminal tokens (up) and some productions (down) of the traffic signs grammar

Examples of productions (signs) of this grammar are the following:

[a—

two-way traffic: S = W = Cy INSIDE A =41 INSIDE A
2. no vehicles: S = F = O

3. speed limit (begin): S = F = Crp INSIDE O = Crp INSIDE O =
N INSIDE O = 30 INSIDE O
4. speed limit (end): S = F = Crp INSIDE O = [/ INTERSECT Crpp]
INSIDE O = [/ INTERSECT N] INSIDE O = [/INTERSECT 30]

INSIDE O

5. no vehicles over maximum width: S = F = Cp

INSIDE O

= Crp INSIDE O = [N INSIDE w»<«] INSIDE O = [30 INSIDE »«

1 INSIDE O

6. no parking: S = F = Cr INSIDE (O = Cpp INSIDE O =
[/ INTERSECT @] INSIDE O
7. proceed in this direction: S = R = Cr INSIDE @ = A INSIDE @ =

= |NSIDE @

Figure 12 visually shows the grammar terminals (upper portion of the image) and the
results of the example productions above (lower portion).

@ Springer

4016 G. Della Penna et al.

StartSymbol -> RELSP1_S
StartSymbol -> RELSP2_S
StartSymbol -> RELSP3_S
StartSymbol -> RELSP4_S
StartSymbol -> RELSP5_S
StartSymbol -> RELSP6_S
StartSymbol -> RELSP7_S
StartSymbol -> RELSP8_S

INTERSECT_CFB1 -> INTERSECT_N

INTERSECT_CFB2 -> INTERSECT_N {INSIDE(30,rlarr)} rlarr

INTERSECT_N -> 30

RELSP1_CW -> udarr

RELSP1_S -> RELSP1_W

RELSP1_W -> RELSP1_CW {INSIDE(udarr,triangle)} triangle

RELSP2_CF1 -> RELSP2_CFB1

RELSP2_CFB1 -> RELSP2_N

RELSP2_F1 -> RELSP2_CF1 {INSIDE(30,rcircle)} rcircle

RELSP2_N -> 30

RELSP2_S -> RELSP2_F1

RELSP3_CF2 -> RELSP3_CFB2

RELSP3_CFB2 -> RELSP3_N {INSIDE(30,rlarr)} rlarr

RELSP3_F2 -> RELSP3_CF2 {INSIDE(30,rcircle)} {INSIDE(rlarr,rcircle)} rcircle

RELSP3_N -> 30

RELSP3_S -> RELSP3_F2

RELSP4_CF3 -> slash {INTERSECT (slash,30)} INTERSECT_CFB1

RELSP4_F3 -> RELSP4_CF3 {INSIDE(slash,rcircle)} {INSIDE(30,rcircle)} rcircle

RELSP4_S -> RELSP4_F3

RELSP5_CF4 -> slash {INTERSECT(slash,30)} {INTERSECT(slash,rlarr)}
INTERSECT_CFB2

RELSP5_F4 -> RELSP5_CF4 {INSIDE(slash,rcircle)} {INSIDE(30,rcircle)} {INSIDE
(rlarr,rcircle)} rcircle

RELSP5_S -> RELSP5_F4

RELSP6_CF5 -> RELSP6_CFP

RELSP6_CFP -> slash {INTERSECT(slash,bcircle)} bcircle

RELSP6_F5 -> RELSP6_CF5 {INSIDE(slash,rcircle)} {INSIDE(bcircle,rcircle)}
rcircle

RELSP6_S -> RELSP6_F5

RELSP7_F6 -> rcircle

RELSP7_S -> RELSP7_F6

RELSP8_A -> rarr

RELSP8_CR -> RELSP8_A

RELSP8_R -> RELSP8_CR {INSIDE(rarr,bcircle)} bcircle

RELSP8_S -> RELSP8_R

Fig. 13 Translation schema generated from the traffic signs grammar in Fig. 11

The algorithm described in Sect. 5.3, applied to the grammar above, produces the output
in Fig. 13. In the translation schema, the terminals should be easy to connect to the symbols
used in Fig. 11, e.g. O is denoted by rcircle, @ by bcircle, » 4 by rlarr, etc.

As an example, the generated grammar above produces sentence 1. with the context-free
production

StartSymbol = RELSP1_S = RELSP1_W = RELSP1_CW {INSIDE(udarr,

triangle)} triangle = udarr{INSIDE (udarr, triangle)} triangle
and sentence 3. with the production

StartSymbol = RELSP2_S = RELSP2_F1 = RELSP2_CF1 {INSIDE(30,
rcircle)} rcircle = RELSP2_CFB1 {INSIDE @30, rcircle)} rcircle = RELSP2_N

{INSIDEQ3O0,rcircle)} rcircle = 30 {INSIDE 30, rcircle)} rcircle.

@ Springer

Exploiting spatial relations for grammar-based... 4017

It is easy to check that the semantic actions in the produced sentences actually contain the
relations that must hold for the sign to be drawn correctly, if we assign to the spatial actions
their “common” semantics.

7 Conclusions

In this paper, we presented a grammar formalism for multidimensional languages, namely the
spatial grammars, which combine common string-like productions with the spatial relations
taken from the PCT framework. Grammars written with such formalism can be automatically
translated in equivalent translation schemas, which can then be handled by any standard
compiler generation tool. Thus, spatial grammars are both easy to understand for humans
and easy to manipulate for the machine.

The presented case study shows how spatial grammars can be a valuable aid in computer
vision tasks like image recognition, where they can be used to support, e.g. ML techniques
in order to make their results more robust and explainable.

However, the applicability of spatial grammars extends beyond such computer vision tasks.
In our future work, we will continue working on the overall algorithm, testing it with different
case studies taken from other real-world contexts in order to explore new application fields. As
an example, we plan to apply spatial grammars in the computer programming context as a tool
to check properties of visual code representations like flowcharts. (Example 4.2 gives a first
idea on how spatial grammars can be used to model flowcharts.) In general, spatial grammars
could be easily applied as a specification/verification/recognition tool where diagrams are
involved, for example, also on vector/CAD drawings, where the use of grammars has already
been proposed (see, for example, [31]).

From the theoretical point of view, as further research in this field, we intend to analyse
the width of the multidimensional language class that can be described by SGs, i.e. their
expressive power, and compare them with well-established formalisms for multidimensional
languages such as graph grammars.

We are also studying how to include the full power of the PCT framework in the SG
formalism, in particular enhancing the algorithm of Sect.5 to support also the temporal
part of PCT. In this way, spatial grammars may be also used to encode dynamic spatial
arrangements, for example, gestures, where PCT has been already successfully applied [12].

Finally, we are working to remove the non-recursiveness limitation from the grammars that
can be handled by the algorithm presented in Sect.5. Actually, given the kind of languages
targeted by this formalism, it may be sufficient to set a reasonable recursion limit in the
normalization algorithm (1) to make the overall transformation work on inherently recursive
grammars in real-world applications.

Acknowledgements We thank the anonymous reviewers and the journal editor for their useful comments and
suggestions.

References

1. Aho A, Sethi R, Ullman J (1986) Compilers, principles, techniques, and tools, Addison-Wesley series in
computer science and information processing. Addison-Wesley, Boston
2. Allen JF (1983) Maintaining knowledge about temporal intervals. Commun ACM 26(11):832-843

@ Springer

4018 G. Della Penna et al.

24.

25.

26.

217.

28.

29.

Balbiani P, Condotta J, del Cerro LF (1998) A model for reasoning about bidemsional temporal relations.
In: Proceedings of the sixth international conference on principles of knowledge representation and
reasoning (KR’98), Trento, Italy, June 2-5, 1998, pp 124-130

Barredo Arrieta A, Diaz-Rodriguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, Garcia S, Gil-Lopez
S, Molina D, Benjamins R, Chatila R, Herrera F (2020) Explainable artificial intelligence (xai): concepts,
taxonomies, opportunities and challenges toward responsible ai. Inf Fusion 58:82-115

. Becker G (2007) Combining rule-based and machine learning approaches for shape recognition. In: 36th

Applied imagery pattern recognition workshop (aipr 2007), pp 65-70

Chen J, Cohn AG, Liu D, Wang S, Ouyang J, Yu Q (2015) A survey of qualitative spatial representations.
Knowl Eng Rev 30:106-136

Clementini E, Felice PD, Oosterom P (1993) A small set of formal topological relationships suitable
for end-user interaction. In: Proceedings of the third international symposium on advances in spatial
databases (SSD’93). Springer, London, pp 277-295

Crimi C, Guercio A, Nota G, Pacini G, Tortora G, Tucci M (1991) Relation grammars and their application
to multi-dimensional languages. J Vis Lang Comput 2(4):333-346

Della Penna G, Magazzeni D, Orefice S (2016) Extending visual information extraction to biomedical
applications. Comput Syst Sci Eng 31(5):371-383

Della Penna G, Magazzeni D, Orefice S (2017) A formal framework to represent spatial knowledge.
Knowl Inf Syst 51(1):311-338

. Della Penna G, Orefice S (2018) Qualitative representation of spatio-temporal knowledge. J Vis Lang

Comput 49:1-16
Della Penna G, Orefice S (2019) Using spatial relations for qualitative specification of gestures. Comput
Syst Sci Eng 34(6):325-338

. Della Penna G, D’ Angelo A (2022) PCT_SGtoTS algorithm repository. https://github.com/gdellapenna/

PCT_SGtoTS

Egenhofer MJ, Mark DM, Herring J (1991) Categorizing binary topological relationships between regions,
lines and points in geographic databases, Technical report, Department of Surveying Engineering, Uni-
versity of Maine

Egenhofer MJ, Mark DM, Herring J (1994) The 9-intersection: formalism and its use for natural-language
spatial predicates, Technical Report 94-1, National Center for Geographic Information and Analysis
Engelfriet] (1997) Context-free graph grammars. In: Rozenberg G, Salomaa A (eds) Handbook of formal
languages: volume 3 beyond words. Springer, Berlin, pp 125-214

Flesca S, Furfaro F, Greco S (2006) A graph grammars based framework for querying graph-like data.
Data Knowl Eng 59(3):652-680

Fu M-Y, Huang Y-S (2010) A survey of traffic sign recognition. In: 2010 International conference on
wavelet analysis and pattern recognition, pp 119-124

Giammarresi D, Restivo A (1997) Two-dimensional languages. In: Rozenberg G, Salomaa A (eds) Hand-
book of formal languages: volume 3 beyond words. Springer, Berlin, pp 215-267

GNU (2021) Gnu bison—the yacc-compatible parser generator. https://www.gnu.org/software/bison

. Goyal R, Egenhofer M (2001) Similarity of cardinal directions. In: Jensen C, Schneider M, Seeger B,

Tsotras V (eds) Advances in spatial and temporal databases, vol 2121. Lecture notes in computer science.
Springer, Berlin, pp 36-55
JavaCC Community (2021) Java compiler compiler (javacc). https://javacc.github.io/javacc

. Johnson SC, Sethi R (1990) Yacc: a parser generator. In: UNIX Vol. II: research system, 10th edn. W. B.

Saunders Company, USA, pp 347-374

Krishnamurti R, Stouffs R (1993) Spatial grammars: motivation, comparison, and new results. In: Proceed-
ings of the fifth international conference on computer-aided architectural design futures. North-Holland,
NLD, pp 57-74

Meyer-Baese A, Schmid V (2014) Chapter 6—statistical and syntactic pattern recognition. In: Meyer-
Baese A, Schmid V (eds) Pattern recognition and signal analysis in medical imaging, 2nd edn. Academic
Press, Oxford, pp 151-196

Moratz R (2006) Representing relative direction as a binary relation of oriented points. In: Proceedings
of the ECAI 2006, 17th European conference on artificial intelligence, August 29—September 1, 2006,
Riva del Garda, Italy, including prestigious applications of intelligent systems (PAIS 2006), pp 407411
Moratz R, Ragni M (2008) Qualitative spatial reasoning about relative point position. J Vis Lang Comput
19(1):75-98

Mossakowski T, Moratz R (2012) Qualitative reasoning about relative direction of oriented points. Artif
Intell 180-181:34-45

Parr T (2021) Antlr (another tool for language recognition). https://www.antlr.org

@ Springer

https://github.com/gdellapenna/PCT_SGtoTS
https://github.com/gdellapenna/PCT_SGtoTS
https://www.gnu.org/software/bison
https://javacc.github.io/javacc
https://www.antlr.org

Exploiting spatial relations for grammar-based... 4019

30. Randell DA, Cui Z, Cohn AG (1992) A spatial logic based on regions and connection. In: Proceedings
of the 3rd international conference on principles of knowledge representation and reasoning (KR’92).
Cambridge, MA, October 25-29, 1992, pp 165-176

31. Rowe PDG, Reed C (2006) Cad grammars. In: Gero JS (ed) Design computing and cognition *06. Springer,
Dordrecht, pp 503-520

32. Rozenberg G, Salomaa A (eds) (1997) Handbook of formal languages, vol 3: beyond words. Springer,
Berlin

33. Sanyal B, Mohapatra RK, Dash R (2020) Traffic sign recognition: a survey. In: 2020 International con-
ference on artificial intelligence and signal processing (AISP), pp 1-6

34. Skiadopoulos S, Koubarakis M (2004) Composing cardinal direction relations. Artif Intell 152(2):143—
171

35. Zhu Z, Liang D, Zhang S, Huang X, Li B, Hu S (2016) Traffic-sign detection and classification in the
wild. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 2110-2118

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Giuseppe Della Penna obtained the master degree in Computer Science
in 1998 at the University of L’Aquila, Italy, and the PhD in Com-
puter Science in 2002 at the University of Rome “La Sapienza”. He
is currently an Associate Professor in the Department of Information
Engineering, Computer Science and Mathematics of the University of
L’ Aquila. His research interests include formal methods applied to web
engineering, software engineering and visual languages. In these con-
texts, he published several peer-reviewed articles in international jour-
nals and conferences.

Sergio Orefice received the master degree in Computer Science from
the University of Salerno, Italy, and a PhD degree in applied mathe-
matics and computer science from the University of Naples, Italy. From
2000 to 2020, he has been an Associate Professor in the Department
of Information Engineering, Computer Science and Mathematics ats
University of L’Aquila, Italy, where he worked in the group of Soft-
ware Engineering and Programming Languages. In 2020, he quit the
Academia for other interests. His main research topics include logic
programming, visual languages and parsing technologies for multidi-
mensional formal languages. On these topics, he has published sev-
eral papers in international journals, books and proceedings of refereed
international conferences.

@ Springer

4020

G. Della Penna et al.

@ Springer

Andrea D’Angelo is a PhD student at the University of L’ Aquila, Italy,
where he previously earned his Bachelor’s and Master’s degrees in
Computer Science, in 2019 and 2022, respectively. His research inter-
ests revolve around information retrieval, formal language theory and
machine learning models for natural language processing, such as
transformer neural networks.

	Exploiting spatial relations for grammar-based specification of multidimensional languages
	Abstract
	1 Introduction
	2 Related work
	3 Background: PCT
	3.1 Graphical objects
	3.2 Spatial relations
	3.2.1 Cardinal
	3.2.2 Overlap
	3.2.3 Connection

	4 Spatial grammars
	4.1 Definition of spatial grammar
	4.2 Language of a spatial grammar

	5 Automatic parser generation
	5.1 From spatial grammars to string grammars
	5.2 From string grammars to translation schemas
	5.3 Implementation

	6 A case study
	7 Conclusions
	Acknowledgements
	References

