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ABSTRACT
Microservice architectures are a widely adopted architectural pat-
tern for large-scale applications. Given the large adoption of these
systems, several works have been proposed to detect performance
anomalies starting from analysing the execution traces. However,
most of the proposed approaches rely on machine learning (ML) al-
gorithms to detect anomalies. While MLmethods may be effective in
detecting anomalies, the training and deployment of these systems
as been shown to be less efficient in terms of time, computational
resources, and energy required.

In this paper, we propose a novel approach based on Context-free
grammar for anomaly detection of microservice systems execution
traces. We employ the SAX encoding to transform execution traces
into strings. Then, we select strings encoding anomalies, and for
each possible anomaly, we build a Context-free grammar using the
Sequitur grammar induction algorithm. We test our approach on
two real-world datasets and compare it with a Logistic Regression
classifier. We show how our approach is more effective in terms of
training time of ∼15 seconds with a minimum loss in effectiveness
of ∼5% compared to the Logistic Regression baseline.

CCS CONCEPTS
• Software and its engineering → Software performance; For-
mal language definitions; •Theory of computation→Grammars
and context-free languages.
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1 INTRODUCTION
Microservice architecture is nowadays one of the most adopted
architectural patterns to develop large-scale systems (like Netflix,
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Amazon, Facebook, and others) [1]. In general, a microservice sys-
tem can be represented as a network of individually deployed sys-
tems, each one devoted to a single specific task (i.e., a microservice).
By interacting with each other, the different microservices allow
the completion of more complex tasks for the end user. Given the
wide adoption of this architectural style, several studies have been
conducted to tackle performance anomalies of these kinds of sys-
tems. In particular, anomaly detection of microservice systems is
a widely addressed topic in the literature [26]. However, most of
the methods proposed employ machine learning (ML) algorithms
to address this task. While the adoption of these approaches can
be effective in terms of anomaly detection, the training and deploy-
ing of ML methods is generally not efficient in terms of required
training time, computational resources, and energy consumption
[11, 18, 21].

In this work, we move towards a more energy-efficient anomaly
detection in microservice systems execution traces by presenting
an innovative approach based on formal Context-Free grammar.
We employ SAX encoding [25] to transform execution traces into
strings, and then infer a grammar from the set of strings that en-
code anomalies. The constructed grammar functions as an anomaly
detector, enabling the encoding and membership check of any new
measurement. We present a first implementation using Sequitur
[22] for grammar induction. We compare the training time and
effectiveness scores of our approach against Logistic Regression.
Results show that the grammar-based approach achieves compara-
ble effectiveness while requiring significantly less time for training.

The remainder of the paper is structured as follows: in Section
2 we discuss some related works; Section 3 presents in detail the
proposed approach; Section 4 shows the experimental evaluation
we conducted to assess the efficiency (in terms of required time)
and effectiveness of our approach; finally Section 5 presents some
future works and concludes the paper.

2 RELATEDWORKS
The problem of performance analysis, and in particular, anomaly
detection in the performances of microservice systems, has been
widely studied by the literature [26].

Among all the proposed approaches, we observe how most of
them employ ML techniques. For instance, Bensal et al. proposed
DeCaf, a system for automated diagnosis and triaging of KPI is-
sues using service logs [4]. The proposed approach uses machine
learning along with pattern mining to help service owners automat-
ically root cause and triage performance issues. Similarly, Du et al.
presented a system for anomaly detection in the performances of
container-based microservice systems [10]. The proposed approach

77

https://orcid.org/0000-0002-0577-2494
https://orcid.org/0000-0001-7388-890X
https://doi.org/10.1145/3629527.3651844
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3651844
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3629527.3651844&domain=pdf&date_stamp=2024-05-07


ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Andrea D’Angelo & Giordano d’Aloisio.

consists of a monitoring module that collects the performance data
of containers, a data processing module based on machine learning
models and a fault injection module integrated for training these
models. An approach employing several ML algorithms is the one
proposed by Jin et al. [14]. The authors perform two different anom-
aly detection analyses in their work: invocation chain anomaly
analysis based on robust principal component analysis and a single
indicator anomaly detection algorithm. The single indicator anom-
aly detection algorithm comprises an Isolation Forest algorithm,
a One-Class Support Vector Machine algorithm, a Local Outlier
Factor algorithm, and the 3𝜎 principle. Finally, Wu et al. employed
a Deep Learning model for performance diagnosis in cloud-based
microservice systems [29]. All the described approaches employ
ML techniques, which may be effective but also require high com-
putational resources and time for their training [21]. Moreover, ML
models are often black-box or challenging to interpret [8].

A different approach for anomaly detection in microservice sys-
tems is the one proposed by Traini et al. [28]. In their work, the
authors proposed a search-based approach for diagnosing perfor-
mance issues in service-based systems. In our work, we move to-
wards the same direction of not employing ML-based techniques
to identify anomalies in the performances of microservice systems.
In particular, we first transform each execution trace (i.e., a se-
quence of response times of remote calls to different microservices)
into a string using the Symbolic Aggregate Approximation (SAX)
encoding [25], which is a well-established technique for anomaly
detection [6, 13]. Next, we employ a context-free-grammar-based
approach to identify if the string representation of the execution
trace contains an anomaly or not.

3 METHODOLOGY
In this section, we formally define our methodology for grammar-
based anomaly detection. Figure 1 depicts the methodology in all
its components. We first detail the methodology for Grammar Con-
struction, then move onto the process of Membership Testing.

Dataset D of
response times SAX Encoding Dataset D' of

strings
Grammar
Induction

Grammar Construction

New record Context-Free
Grammar

SAX Encoding

Membership
testing

Figure 1: The proposed methodology involves a one-time
grammar construction process. Then, each new record un-
dergoes membership checking against the grammar.

3.1 Grammar Construction
We first focus on the one-time process of Grammar Construction.
Starting from dataset D of response times, we define the SAX Encod-
ing as the function 𝑆𝐴𝑋 : R𝑛 → Σ𝑛 , where Σ represents a predeter-
mined set of characters. SAX takes a set of real numbers 𝑖 as input
and maps them to a string of characters 𝑠 such that |𝑖 | = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠).
By encoding all the response times in dataset D with SAX encoding,
we obtain a dataset D’ of labelled strings. From D’ we select the
execution traces (i.e., set of response times) showing anomalies.
Then, for each anomaly category𝐴, we apply a Grammar induction
algorithm to the execution traces having that specific anomaly 𝐴,
to obtain a Context-Free Grammar 𝐺 = (𝑉 ,𝑇 , 𝑃, 𝑆), where V is the
set of non-terminal symbols, T is the set of terminal symbols, P is
the set of productions and S is the starting symbol. The grammar
G must have the following properties:

(1) 𝑇 = Σ
(2) 𝐿(𝐺) = {𝑆𝐴𝑋 (𝑖) | 𝑖 is labeled as an anomaly}
The first property ensures that the set of terminal symbols recog-

nized by the grammar is the same as the set of characters obtained
via SAX encoding. For this reason, the domain-specific choice of Σ
for SAX Encoding plays an important role in the resulting grammar.
A Σ encompassing numerous characters enhances the precision of
anomaly detection, yet it may lead to an unwarranted increase in
the size of the grammar. Conversely, a Σ comprising only a few
characters may not adequately discern subtle anomalies.

The second property fixes the language generated from G as the
set of strings obtained via Sax Encoding and labelled as anomalies
in the starting dataset D. Note that the second property does not
imply that only those strings must be employed to build the gram-
mar. Several grammar induction algorithms also consider negative
examples as an aid to build the resulting grammar.

The grammar G was chosen to be Context-Free as it is able
to represent intrinsic links inside of the string that is useful in
our context. In instances where a microservice relies on several
others, anomalies in their response times may be interconnected. It
is crucial that the chosen grammar can accurately deduce that an
elevated response time for one microservice could be contingent
on another. Achieving this level of inference is not feasible with
Regular Grammars or Regex, making the use of a Context-Free
Grammar essential.

3.2 Membership Testing
Once the grammar G is built from the grammar induction algorithm,
it effectively functions as a model for anomaly detection. We can
now test new sets of real numbers for anomalies. When a new
execution trace 𝑗 arrives, it must be processed with the same SAX
function used for grammar construction. Then:

• if 𝑆𝐴𝑋 ( 𝑗) ∈ 𝐿(𝐺), j contains an anomaly.
• if 𝑆𝐴𝑋 ( 𝑗) ∉ 𝐿(𝐺), there is no anomaly.

The process of understanding if a string is part of the language
generated by a grammar is known as Membership checking. Several
Python libraries provide convenient methods for this task (e.g.,
NLTK [5]).
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Figure 2: Parse tree generated when checking the member-
ship of a string that includes an anomaly in our grammar.
The final two microservices exhibit values above the typical
range, impacting the overall response time (initial character).

0 -> 1 'b' 3
1 -> 'd' 105
105 -> 170 170
170 -> 'a' 'a'
170 -> 'a' 'a'
3 -> 'c' 'c'

Listing 1: Grammar productions involved in the membership
checking of string "daaaabcc".

Whenever a string appears to be part of a grammar, the mem-
bership check also produces a parse tree of productions starting
from the initial symbol of the grammar S to the given string. For
instance, listing 1 depicts the necessary productions to derivate the
string "daaaabcc" (which contains an anomaly) from the starting
symbol of our grammar. The derivation can also be represented in
a visually intuitive way by generating a parse tree. For instance,
Figure 2 portrays a parse tree generated when the aforementioned
string is processed by our grammar. The parse tree provides a visual
representation that aids in understanding the precise locations of
anomalies within the string. By examining the tree structure, we
can easily pinpoint the specific steps and grammar productions
leading to the anomalous elements.

4 EVALUATION
In this section, we describe the experimental evaluation conducted
to assess the efficiency and effectiveness of our approach. In par-
ticular, we aim to answer the following two research questions
(RQ):
RQ1. How much time does the proposed approach require to con-

struct a grammar compared to the training time of standard
ML methods?

RQ2. How effective is the proposed approach in detecting anom-
alies compared to standard ML methods?

In both experiments, we employ a Logistic Regression (LogReg)
classifier [19] as a baseline. We have chosen this method among
the possible classification approaches because it natively supports
multi-class classification (i.e., classification problems where the
number of possible values of the label is higher than two [2])
and because it usually achieves a good trade-off between predic-
tion’s effectiveness and training time compared to other classifica-
tion models [17]. We adopted the implementation provided by the
scikit-learn Python library [23].

Concerning our approach, we employ the Sequitur algorithm
[22] for the grammar induction phase shown in figure 1. Sequitur is
an algorithm that allows the generation of context-free grammars
starting from a sequence of strings by replacing repeated phrases
with a grammatical rule that generates the phrase. It repeats this
process recursively until all the strings are examined.

As a use case, we employ the dataset provided by Traini et al. in
[28]1. The dataset comprises 560 CSV files containing pre-processed
execution traces (i.e., series of response times of remote procedure
calls to different microservices) with injected anomalies originating
from two open-source microservices systems: Train-Ticket [16]
and E-Shopper2. Each scenario features two possible anomalies,
identified by the anomaly column.

In the following, we describe how we addressed RQ1. Next, we
detail the answer to RQ2. The complete replication package of the
experiment is available in Zenodo [9].

4.1 Addressing RQ1
The first research question focuses on the amount of time required
by the proposed approach to generate context-free grammars com-
pared to the amount of time needed for the LogReg classifier to
train on a specific dataset. To answer this question, we computed
the grammar construction and training times twenty times to avoid
possible measurement biases. It is worth noticing how the gram-
mar construction phase encompasses both the SAX encoding of
the dataset and the grammar induction, as shown in figure 1. This
experiment has been executed on a DELL XPS 13 2019 with an Intel
i7 processor, 16 GB of RAM and Windows 11 operating system.

Table 1: Comparison of means and standard deviation of Lo-
gistic Regression training and Grammar Construction times
in seconds.

E-Shopper Train-Ticket

Grammar 5.848 ± 0.506 7.724 ± 0.309
LogReg 18.833 ± 2.933 21.556 ± 2.863

Table 1 presents the mean and standard deviation of LogReg
training time and grammar construction time for both E-Shopper
and Train-Ticket datasets. As can be seen, our approach requires
∼13 seconds less to construct a grammar compared to the training
time of the LogReg classifier for the E-Shopper use case and ∼14
less for the Train-Ticket use case. In addition, we note how the

1https://github.com/SpencerLabAQ/icpe-data-challenge-delag
2https://github.com/SEALABQualityGroup/E-Shopper
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grammar construction time has less variability compared to the
training time of the model.

Answer to RQ1
Our proposed approach requires a time to construct a gram-
mar that is ∼13 seconds lower compared to the training
time of a LogReg classifier for the E-Shopper use case and
∼14 seconds lower for the Train-Ticket use case. Moreover,
the time required to build the grammar is almost constant
over different runs.

4.2 Addressing RQ2
The second research question focuses on the effectiveness of our
proposed approach in detecting anomalies compared to a LogReg
classifier. To answer this question, we used our approach to detect
the anomalies on both E-Shopper and Train Ticket datasets and
compared their effectiveness with the LogReg baseline. More in
detail, for each dataset, we perform a train-test split and use 80%
of the data to build the grammar/train the LogReg model, and we
predict anomalies on the remaining 20%. We employ accuracy [24],
precision, and recall [7] scores as effectiveness metrics. Concerning
the setting of hyper-parameters, for LogReg, we used the default
ones provided by the scikit-learn library. Instead, the only hyper-
parameter required by our approach is the number of bins used
by the SAX encoder algorithm [25], which we set to 5. We tested
different values of this parameter and found that 5 achieves the
highest effectiveness in both use cases.

E-Shopper Train Ticket
Dataset

0.0

0.2

0.4

0.6

0.8

Sc
or

e

Metric = Accuracy

E-Shopper Train Ticket
Dataset

Metric = Precision

E-Shopper Train Ticket
Dataset

Metric = Recall

Approach
LogReg Grammar

Figure 3: Comparison of accuracy, precision and recall scores
of Logistic Regression and our grammar-based approach.

Figure 3 reports the accuracy, precision and recall scores for
E-Shopper and Train Ticket use cases. The blue bar shows the
results achieved by LogReg while the orange bar displays the results
achieved by our grammar-based approach. As can be seen, our
approach has an effectiveness that is almost comparable to the
one achieved by the LogReg model, with a difference of, at most,
10% in the precision score for the Train Ticket dataset. However,
we also observe how, in general, the LogReg classifier has a lower
effectiveness in the Train Ticket dataset, meaning that the anomaly
patterns are less evident in this use case.

Answer to RQ2
Our approach has an effectiveness that is almost compara-
ble to the one achieved by a LogReg classifier, with a delta
of at most 10% in a use case with less evident anomaly
patterns.

4.3 Discussion
The performed experiments showed how our proposed approach
achieves a higher efficiency in terms of time required to construct
the grammar, with a little cost in terms of prediction effectiveness
compared to a Logistic Regression classifier. However, it is worth
noticing how the efficiency and effectiveness of our approach are
also related to the algorithms employed for SAX encoding and gram-
mar induction. Concerning the SAX encoding, in this preliminary
work, we employ an implementation of the classical algorithm pro-
posed in [25]. However, other versions of the algorithm have been
proposed in the literature that may better detect the differences in
anomaly execution traces [20, 27, 30].

The same can be said for the grammar induction algorithm. In
this work, we employ the Sequitur algorithm which is one of the
most adopted algorithms for grammar induction. However, the
grammars generated by this algorithm are often too large and not
optimal. Finding the minimum grammar representing a specific
language is known to be an NP-complete problem [12]. Neverthe-
less, some works have been proposed in the last years that try to
achieve this task [3, 15].

5 CONCLUSION AND FUTUREWORK
In this paper, we introduced an innovative method for anomaly
detection utilizing Context-free Grammar, serving as an alterna-
tive to Machine Learning techniques. We formally outlined our
methodology and introduced an initial implementation using a
naive grammar induction algorithm. We then presented prelimi-
nary results, which demonstrated comparable effectiveness to Lo-
gistic Regression with minimal training time requirements. The
presented methodology is adaptable and can be easily tuned based
on domain-specific parameters. In addition, the grammar induction
algorithm can be interchangeable based on specific needs. Future
work avenues include exploring more sophisticated SAX encoding
algorithms like the ones proposed in [20, 27, 30], along with an au-
tomatic approach for the selection of Σ. Next, we plan to investigate
other grammar induction algorithms like ARVADA [15], which can
produce more readable and shorter context-free grammars. Another
possible approach would be the hand-crafting of regular expres-
sions or grammars by domain experts. Our methodology can also be
easily expanded to account for explainability needs. By construct-
ing the parse tree of a given string, we can easily visualize where
the anomaly happened and what microservices it encompassed.
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