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A B S T R A C T

Nowadays assuring that search and recommendation systems are fair and do not apply dis-
crimination among any kind of population has become of paramount importance. This is also
highlighted by some of the sustainable development goals proposed by the United Nations.
Those systems typically rely on machine learning algorithms that solve the classification
task. Although the problem of fairness has been widely addressed in binary classification,
unfortunately, the fairness of multi-class classification problem needs to be further investigated
lacking well-established solutions. For the aforementioned reasons, in this paper, we present
the Debiaser for Multiple Variables (DEMV), an approach able to mitigate unbalanced groups
bias (i.e., bias caused by an unequal distribution of instances in the population) in both
binary and multi-class classification problems with multiple sensitive variables. The proposed
method is compared, under several conditions, with a set of well-established baselines using
different categories of classifiers. At first we conduct a specific study to understand which is
the best generation strategies and their impact on DEMV’s ability to improve fairness. Then,
we evaluate our method on a heterogeneous set of datasets and we show how it overcomes the
established algorithms of the literature in the multi-class classification setting and in the binary
classification setting when more than two sensitive variables are involved. Finally, based on the
conducted experiments, we discuss strengths and weaknesses of our method and of the other
baselines.

. Introduction

Bias impacts human beings as individuals or groups characterized by a set of legally-protected sensitive attributes (e.g., their
ace, gender, or religion) by under-representing them or by representing them in a wrong manner. If not managed, the inequalities
einforced by search and recommendation algorithms can lead to severe societal consequences, such as discrimination and unfair-
ess (Hajian, Bonchi, & Castillo, 2016). Both search and recommendation algorithms provide users with ranked results that fit and
atch their needs and interests. Both tasks often convey and strengthen bias in terms of imbalances and inequalities, mainly if they rely

n or encompass machine learning algorithms as those which solve classification problems. For this reason, assuring that search
nd recommendation systems are fair and do not apply discrimination among any kind of population has become of paramount
mportance, mainly because they are pervasive in several domains (Amigó, Deldjoo, Mizzaro, & Bellogín, 2023; Boratto & Marras,
021) - e.g., justice (Redmond & Baveja, 2002), health care (Street, Wolberg, & Mangasarian, 1993), education (Austin, Christopher,
Dickerson, 2016), etc.
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Fig. 1. Application of DEMV.

The importance of having fair and egalitarian systems must be a fundamental step to solving some of the 17 sustainable
development goals proposed by the United Nations.1 In particular, we will possibly rely on information systems to accomplish
goals 5 (gender equality) and 10 (reduced inequalities) on a large scale. If those information systems include some AI or Machine
learning techniques (such as classification and recommendation), it will be essential to identify and mitigate properly algorithmic
Bias and Fairness.

Over the years, many recommendation systems have been proposed that rely on multi-class classification systems. For instance,
consider the one proposed by Baskota and Ng (2018) to recommend admissions to a graduate school, the one proposed by Yanes,
Mostafa, Ezz, and Almuayqil (2020) to improve the learning experience, the one proposed by Suchithra and Pai (2018) to recommend
fertilizers, the one proposed by Meenachi, Ramakrishnan, Sivaprakash, Thangaraj, and Sethupathy (2022) for crop recommendation,
or the one proposed by Zhang, Cao, Gross, and Zaiane (2013) to recommend physical therapy. These systems embed a multi-
class classifier to solve multi-class classification tasks. Assuring fairness of these systems is also essential to achieving some of the
forementioned sustainable goals: i.e., goal 2 (zero huger) (Meenachi et al., 2022; Suchithra & Pai, 2018), goal 3 (good health and
ell-being) (Zhang et al., 2013), and goal 4 (quality education) (Baskota & Ng, 2018; Yanes et al., 2020). In Stitini, Kaloun, and
encharef (2022) the authors even highlight how integrating multi-class classification into context-aware recommendation systems
an improve the overall recommendation. Different methods have been proposed to mitigate bias at several levels of data processing
or both classification and recommender systems (Caton & Haas, 2020; Mehrabi, Morstatter, Saxena, Lerman, & Galstyan, 2021).
owever, we notice that, despite the fact that it is widely adopted and constitutes a building block for personalization and search

ystems, the multi-class classification problem is still not effectively addressed (Jiang, Liu, Ding, Liang, & Duan, 2017). In addition
o fairness, a system must also have high accuracy of the predictions in order to be usable in the real world. However, most of
he time the mitigation of bias negatively influences the accuracy of the predictions (Caton & Haas, 2020). This trade-off must be
anaged, for example, by properly generating or modifying the instances of a dataset in a pre-processing context or by properly
odifying the behavior of a method in an in-processing context.

For the aforementioned reasons, in this work, we focused, as a building block of other information access systems, on a bias
itigation method capable of (i) managing an arbitrary number of sensitive variables in the multi-class classification scenario (ii)
reserving the accuracy of the predictions.

In the detail, to conduct our research and to better address the problem of bias mitigation in multi-class classification, we
ormulate the following four research questions (RQ) that will help to highlight the fundamental findings and novel contributions
f this paper.

RQ1. What are the strengths and limitations of current existing approaches addressing bias mitigation in multi-class
classification problems?
In this paper, we analyze three baselines designed to mitigate bias in multi-class classification problems, namely Exponentiated
Gradient and Grid Search methods from Agarwal, Beygelzimer, Dudik, Langford, and Wallach (2018), and the Blackbox
method from Putzel and Lee (2022). To the best of our knowledge, these are the only ones implemented for the multi-class
classification task. To highlight their strengths and weaknesses, we apply each method to a heterogeneous set of binary and
multi-class datasets that are widely used in research (extensively discussed in Section 4.2).

RQ2. How can we design a novel approach that goes beyond the existing baselines?
To overcome some of the limitations of the analyzed baseline, we present an improved version of Debiaser for Multiple Variables
(DEMV) presented in d’Aloisio, Stilo, Di Marco, and D’Angelo (2022). DEMV is a generalization of the Sampling algorithm
proposed by Kamiran and Calders (2012). DEMV is model- and data-agnostic, allowing its introduction in already existing
systems without particular effort and without introducing structural changes.
DEMV is the first proposed pre-processing method to mitigate bias caused by an unequal distribution of instances in the
population (i.e. unbalanced groups bias) in an agnostic way in both binary and multi-class classification considering multiple
sensitive variables. As highlighted in Fig. 1, DEMV takes as input a generic dataset and returns in output the debiased dataset
without considering the classifier involved in the task. We implement DEMV with a plug-in approach where the user can
select different Instance generation strategies. The source code is provided on GitHub and on the Territori Aperti RI.

RQ3. How can DEMV keep a high level of accuracy while improving fairness?
Since DEMV is a pre-processing algorithm, the fairness and accuracy trade-off can be managed by better manipulating the
instances of the dataset. Since our approach tackles the unbalanced groups bias, this means generating new instances that are

1 https://sdgs.un.org/goals
2
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coherent with the existing ones in terms of values and distribution. We plug-in in DEMV three different generating strategies,
namely Uniform,2 SMOTE (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) and ADASYN (He, Bai, Garcia, & Li, 2008). In order to
evaluate the influence of each strategy on DEMV’s ability to enhance the fairness and accuracy of the classifier, we extensively
evaluate DEMV by employing nine datasets extensively used in literature (see Section 4.2). We perform this analysis both in
binary and multi-class settings.

RQ4. In which conditions does DEMV goes beyond the existing baselines?
To answer this question, we run a set of experiments whose aim is to evaluate the performance of DEMV in improving fairness
while keeping a high level of accuracy. In particular, we evaluate it in binary and multi-class classification problems and
consider sensitive groups identified by up to three sensitive variables. To demonstrate the wide validity of DEMV, we employ
in the experiments an heterogeneous set of ML classifiers, namely Logistic Regression, Multi-Layer Perceptrons, Gradient
Boosting Classifier and SVC. As we show in Section 4.4, DEMV outperforms the baselines in the binary task in the case
of more than two sensitive variables, while it remains competitive with one or two sensitive variables. In the case of the
multi-class task, DEMV outperforms the baselines in every setting (i.e., number of sensitive variables) for all the considered
datasets. Finally, DEMV improves the fairness of every of the analyzed classification methods without affecting their behavior
and keeping a considerable high level of accuracy.

Note that in this paper, we extend our previous work presented in d’Aloisio et al. (2022) with the following main contributions:

1. We analyze strengths and weaknesses of currently established methods for bias mitigation that can be applied to both binary
and multi-class classification with multiple sensitive variables;

2. We revise the original algorithm by generalizing the functions for generating and removing instances during the process.
In particular, we rewrite the algorithm as a plug-in approach in which different functions for the creation and deletion of
instances can be called;

3. We evaluate the impact of different instances generating strategies on the accuracy and fairness achieved by DEMV;
4. We extensively evaluate DEMV considering several settings:

• employing a larger set of binary and multi-class datasets. The selected datasets are heterogeneous both in terms of data
scope and size, enlarging the generality of our analysis;

• considering a larger set of established baselines able to handle bias in binary and multi-class classification with any
number of sensitive variables. We highlight the strengths and weaknesses of the baselines and show how DEMV is able
to overcome them in all settings when the multi-class classification task is considered, and in the case of more than two
sensitive variables, in case of binary classification task;

• executing a deeper analysis that employs a different number of sensitive variables. In particular, we consider sensitive
groups made by one, two, and three sensitive variables. We highlight how the number of sensitive variables (badly)
influences the ability of baselines to improve fairness while DEMV performs consistently;

• employing a more extensive set of classifiers and analyzing the impact of DEMV on their behavior. In particular, we
consider the following categories of classification methods: Linear, Boosting, Support Vector Machines, and Neural
Networks.

This paper is structured as follows: in Section 2, we recall some background knowledge used in our work and describe some bias
itigation methods in the context of multi-class classification problem; in Section 3, we describe in detail the proposed approach;

ection 4 is dedicated to the experimental analysis that has been conducted to evaluate the best-generating strategy and to compare
EMV both in binary and multi-classification problems while discussing its current strengths and weaknesses, also, a description on
ow to reproduce the experiments is provided; in Section 5 we discuss the results, and we answer to the four research questions;
inally, Section 6 reports possible points of improvements of DEMV and concludes the paper.

. Background knowledge and related work

In the last ten years, the study of bias and fairness in machine learning acquired considerable relevance. Many definitions and
etrics have been proposed to address different kinds of bias and fairness (Mehrabi et al., 2021). In this section, we recall the
efinitions of bias and fairness used in this paper. Then, we describe the related work in the context of bias mitigation in binary
nd multi-class classification problems.

.1. Bias and fairness definitions

Bias (and relative unfairness) can arise from different sources and be defined in several ways. In Mehrabi et al. (2021) the authors
ighlighted that bias can be generated from:

• the data used to train the ML algorithms (e.g., Measurement bias (Suresh & Guttag, 2019), Omitted Variable bias (Busenbark,
Yoon, Gamache, & Withers, 2022; Clarke, 2005), or Representation bias (Suresh & Guttag, 2019));

2 Uniform strategy replicates the instances of the dataset with a uniform probability distribution.
3
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• the algorithm which may introduce bias in the users’ behavior (e.g., Algorithmic bias (Baeza-Yates, 2018));
• the population which generates the data used to train the models (e.g., Historical bias (Suresh & Guttag, 2019), Population

bias (Olteanu, Castillo, Diaz, & Kıcıman, 2019), or Social bias (Baeza-Yates, 2018)).

The former definitions of bias, with the only exception of Algorithmic bias, which is strongly related to the ML algorithm, can be
grouped into two macro-categories of bias:

• Unbalanced Groups bias: in which the bias is generated by an unequal distribution of instances in the population
(e.g., Representation bias, Historical bias, Social bias, Population bias)

• Confounding Variables bias: in which the bias is generated by a wrong interpretation or representation of instances in the
population (e.g., Measurement bias, Omitted Variable bias)

ur proposed approach addresses the first macro-definition of bias by mitigating the unequal distribution of instances through an
ptimal balancing of them inside the population.

Concerning fairness definitions, Demographic (Statistical) Parity (DP) (Dwork, Hardt, Pitassi, Reingold, & Zemel, 2012; Kusner,
oftus, Russell, & Silva, 2017) is one of the most used definitions of group fairness (Mehrabi et al., 2021), which assumes the
ndependence among the predicted positive label 𝑦𝑝 and the sensitive variables 𝑆1,… , 𝑆𝑛. It is defined formally as follows:

Definition 1 (Demographic Parity). Let 𝑌 be the predicted value, 𝑦𝑝 the positive label and 𝑆 a generic binary sensitive variable where
𝑆 = 1 and 𝑆 = 0 identify, respectively, the privileged and unprivileged groups. A predictor is fair under Demographic Parity if:

𝑃 (𝑌 = 𝑦𝑝|𝑆 = 1) = 𝑃 (𝑌 = 𝑦𝑝|𝑆 = 0) (1)

A different formulation for the DP is the Disparate Impact (DI) (Feldman, Friedler, Moeller, Scheidegger, & Venkatasubramanian,
2015), which considers the ratio among the two probabilities. In this case, following the 80% rule (Feldman et al., 2015), the value
must be between 0.8 and 1.2 in order to have fairness. DI is defined formally as follows:

Definition 2 (Disparate Impact). Let 𝑌 be the predicted value, 𝑦𝑝 the positive label and 𝑆 a generic binary sensitive variable where
𝑆 = 1 and 𝑆 = 0 identify the privileged and unprivileged groups, respectively. A predictor is fair under Disparate Impact if:

0.8 ≤
𝑃 (𝑌 = 𝑦𝑝|𝑆 = 1)

𝑃 (𝑌 = 𝑦𝑝|𝑆 = 0)
≤ 1.2 (2)

Equalized Odds (EO) (Hardt, Price, & Srebro, 2016) is the third definition of fairness we consider which overcomes the limitation
f DP by not removing the correlation among the true and predicted outcomes (Hardt et al., 2016; Verma & Rubin, 2018). In fact, a
lassifier is considered fair under EO if the probability of an item to be positively classified is the same with respect to the sensitive
ariable and the ground truth. EO is formally defined as follows:

efinition 3 (Equalized Odds). Let 𝑌 be the predicted value, 𝑌 the true value, 𝑦𝑝 the positive label and 𝑆 a generic binary sensitive
ariable where 𝑆 = 1 and 𝑆 = 0 identify the privileged and unprivileged groups, respectively. A predictor is fair under Equalized
dds if:

𝑃 (𝑌 = 𝑦𝑝|𝑌 = 𝑦, 𝑆 = 1) = 𝑃 (𝑌 = 𝑦𝑝|𝑌 = 𝑦, 𝑆 = 0) 𝑦 ∈ {𝑦1,… , 𝑦𝑛} (3)

Both DP and DI fall into the We Are Equal metrics family, which holds that all groups have similar abilities concerning the task
i.e., have the same probability of being classified in a certain way). On the contrary, EO resides in the What You See Is What You Get
amily, which states that the observations reflect the ability with respect to the task (i.e., an item should be classified in a certain
ay only if the other attributes imply it) (Friedler, Scheidegger, & Venkatasubramanian, 2016).

All these definitions were initially proposed for binary classification problems (𝑦𝑝 = 1), but they can be easily extended to the
ulti-class classification domain by identifying one positive label value among the possible ones (𝑦𝑝 ∈ {𝑦1,… , 𝑦𝑛}).

.2. Related works

Over the years, many methods have been proposed to mitigate bias at different levels of data processing (Caton & Haas, 2020;
ehrabi et al., 2021). In particular, we distinguish among (d’Alessandro, O’Neil, & LaGatta, 2017):

• Pre-processing methods, which modify the data to remove the underlying bias, such as, (Feldman et al., 2015; Kamiran &
Calders, 2012);

• In-processing methods, which change the learning algorithm to remove discrimination during the model training process,
such as (Agarwal et al., 2018; Denis, Elie, Hebiri, & Hu, 2021);

• Post-processing methods, which re-calibrate an already trained model using a holdout set not used during the training phase,
4

such as (Hardt et al., 2016; Putzel & Lee, 2022).
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In general, the sooner a technique can be applied, the better because it can be chained with other bias mitigation methods in the
later processing phases (AI fairness 360 - Resources, 2018; Wolpert, 1999).

Among the different machine learning problems (i.e. classification, regression, clustering, etc.), the classification task has been
he most addressed in bias mitigation (Caton & Haas, 2020; Mehrabi et al., 2021). In the following, we will focus on stable methods3

to improve fairness in the classification task.
Most of the methods available in the literature focus only on binary classification with one sensitive variable (Mehrabi et al.,

2021). Among them, one widely adopted pre-processing method is the Sampling algorithm proposed by Kamiran and Calders (2012).
his method balances both privileged and unprivileged users in the case of binary classification with a single sensitive variable.
ormally, let be 𝑆 the sensitive variable with {𝑤, 𝑏} ∈ 𝑆 representing the privileged and unprivileged groups, respectively, and let
e 𝑌 the target label with {+,−} ∈ 𝑌 defining the positive and negative outcomes. The Sampling algorithm first splits the original
ataset into four groups:

• Deprived group with Positive label (DP): all instances with 𝑆 = 𝑏 ∧ 𝑌 = +;
• Deprived group with Negative label (DN): all instances with 𝑆 = 𝑏 ∧ 𝑌 = −;
• Favored group with Positive label (FP): all instances with 𝑆 = 𝑤 ∧ 𝑌 = +;
• Favored group with Negative label (FN): all instances with 𝑆 = 𝑤 ∧ 𝑌 = −.

Then, for each group, the algorithm computes its observed and expected sizes. Finally, it balances the groups iteratively by randomly
adding and removing instances until the observed sizes of the groups are equal to their expected ones.

The Sampling algorithm is the starting point for the definition of DEMV. In fact, we have extended this algorithm to the multi-class
classification domain with multiple sensitive variables and we have employed different instance generation strategies during the
balancing process. Very few methods are able to mitigate the bias in the multi-class classification problems (Agarwal et al., 2018;
Putzel & Lee, 2022).

Among those, there is the Blackbox post-processing method proposed by Putzel and Lee (2022). The authors extend the method
proposed by Hardt et al. (2016) to the multi-class setting. Their approach involves the construction of a linear program over the
conditional probabilities of the adjusted predictor 𝑃 (𝑌 𝑎𝑑𝑗 = 𝑦 𝑎𝑑𝑗

|𝑌 = 𝑦̂, 𝐴 = 𝑎) such that the desired fairness criterion is satisfied by
hose probabilities. In order to build the linear program, the authors formulate both the loss and fairness criteria as linear constraints
n terms of the protected attribute conditional probability matrices. Then, this linear program is used to find the label value, among
he possible ones, that minimizes both the loss and the fairness constraints.

An in-processing method that solves unfairness in multiple classification settings is the one presented by Agarwal et al. (2018).
he algorithm addresses two definitions of fairness at once: Demographic Parity and Equalized Odds. The authors formulate such
efinitions as linear constraints and then build an Exponentiated Gradient (EG) reduction algorithm (Kivinen & Warmuth, 1997)
hat yields a randomized classifier with the lowest error subject to the desired fairness constraints. The method follows a MinMax
pproach in which the players try to minimize the given constraint and maximize the classifier’s score. The authors also propose
simplified Grid Search version of the algorithm (GRID), which generates a sequence of relabeling and reweightings, and trains
predictor for each one. The values yielding the best accuracy and fairness trade-off are selected and thus returned. Although

he authors study their algorithms mainly in binary classification problems, they also show how their method can be applied to
egression and multi-classification problems.

To the best of our knowledge, most of the methods in literature are primarily designed for binary classification problems, and
ew of them can be applied in the pre-processing phase. Moreover, only three stable approaches are realized to mitigate bias in
ulti-class classification problem, and none works in pre-processing phase.

Our proposed method goes beyond the state of art since it works in the pre-processing stage considering multiple sensitives
ariables, and both binary and multi-class classification task. Since it is a pre-processing method, it can be chained with other
lgorithms in later processing steps. Finally, it outperforms the state of art in most of the considered settings, as it is shown in the
xperimental Section 4.

. Debiaser for Multiple Variables (DEMV)

In this section, we describe in detail the Debiaser for Multiple Variables (DEMV) approach, a pre-processing bias mitigation method
or multiple sensitive variables in the classification context.

The main idea behind the proposed method is that to enhance effectively the classifier’s fairness during pre-processing is
ecessary to consider all possible combinations of the values of the sensitive variables and the label’s values for the definition
f the so-called sensitive groups. Under the definition of bias considered in this paper (i.e., unbalanced groups bias), if a dataset is
iased, we observe that the size of the sensitive group identified by the privileged value of the sensitive variable (e.g., men) and
he positive label (e.g., high income) should be larger than expected. In comparison, the size of the sensitive group identified by the
nprivileged value of the sensitive variable (e.g., women) and the positive label (e.g., high income) should be smaller than expected.
n the same way, the size of the sensitive group identified by the unprivileged value of the sensitive variable and the negative label
hould be larger than expected, and the group size determined by the positive value of the sensitive variable and the negative label

3 Stable methods are the ones having an available and stable implementation.
5



Information Processing and Management 60 (2023) 103226G. d’Aloisio et al.

v
l
l
c
a
o
v

b
b

R

3

should be smaller than expected. For this reason, to enhance the fairness of the classifier, we have to perfectly balance the size of
these groups by adding or removing items to remove disparity.

We approach the problem by recursively identifying all the possible groups given by combining all the values of the sensible
ariables with the belonging label (class). Next, for each group, we compute its expected (𝑊𝑒𝑥𝑝) and observed (𝑊𝑜𝑏𝑠) sizes4 and
ook at the ratio among these two values. If 𝑊𝑒𝑥𝑝∖𝑊𝑜𝑏𝑠 = 1, it implies that the group is fully balanced. Otherwise, if the ratio is
ess than one, the group size is larger than expected, so we must remove an element from the considered group accordingly to a
hosen deletion strategy. Finally, if the ratio is greater than one, the group is smaller than expected, so we have to add another item
ccordingly to a generation strategy. For each group, we recursively repeat this balancing operation until 𝑊𝑒𝑥𝑝∖𝑊𝑜𝑏𝑠 converge to
ne. It is worth noting that, in order to keep a high level of accuracy, the new items added to a group should be coherent in their
alues and distribution with the already existing ones.

Hence, DEMV can be defined as an algorithm made of two separate procedures: identification of the sensitive groups and
alancing of them. In the following, we first illustrate the procedure used to identify the sensitive groups; then, we describe the
alancing step.

The full implementation of DEMV, comprising of all the code to reproduce the experiments, is available at the Territori Aperti
I5 and on GitHub6 as well (see also Section 4.5).

.1. Sensitive groups identification

Algorithm 1: Pseudo-code of DEMV
Input: (Dataset 𝐷, Sensitive variables 𝑆1, 𝑆2,… , 𝑆𝑛, Label 𝐿, 𝑖 = 0, 𝐺 = [], condition=𝑡𝑟𝑢𝑒)
Output: Sampled dataset 𝐷𝑆

1 𝑛 = 𝑙𝑒𝑛𝑔𝑡ℎ({𝑆1, 𝑆2,… , 𝑆𝑛})
/* base condition: check if all the sensitive variables have been explored for a given

condition */
2 if 𝑖 == 𝑛 then
3 foreach 𝑙 ∈ 𝐿 do
4 𝑔 = {𝑋 ∈ 𝐷| condition ∧ 𝐿 == 𝑙}

5 𝑊𝑒𝑥𝑝 =
|{𝑋 ∈ 𝐷|condition}|

|𝐷|

∗
|{𝑋 ∈ 𝐷|𝐿 == 𝑙}|

|𝐷|

6 𝑊𝑜𝑏𝑠 =
|𝑔|
|𝐷|

7 𝑔𝑏 = BALANCE(𝑔,𝑊𝑒𝑥𝑝,𝑊𝑜𝑏𝑠)
8 add 𝑔𝑏 to 𝐺

9 return 𝐺

10 else
/* recursion point: select a new sensitive variable and call DEMV for each possible value

of the variable */
11 𝑖 = 𝑖 + 1
12 foreach 𝑠 ∈ 𝑆𝑖 do
13 𝐺′ = DEMV(𝐷,𝑆1,… , 𝑆𝑛, 𝑖, 𝐺, condition = 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ∧ 𝑆𝑖 == 𝑠)
14 add 𝐺′ to 𝐺

/* end condition: check if the number of explored sensitive groups is equal to the number
of all possible combinations among values of the sensitive variables and values of the
label */

15 if 𝑙𝑒𝑛𝑔𝑡ℎ(𝐺) == |𝐿| ∗
(
∏𝑛

𝑖=1 |𝑆𝑖|
)

then
16 𝐷𝑆 = merge all 𝑔 ∈ 𝐺
17 return 𝐷𝑆

18 else
/* if the end condition is not satisfied, simply return the set of explored sensitive

groups */
19 return 𝐺

4 The formal definition of these values is given in Section 3.1.
5 https://bit.ly/3scwtaB
6 https://github.com/giordanoDaloisio/demv2022
6
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The identification and management of the sensitive groups are performed by the DEMV recursive function, whose pseudo-code
is shown in listing Algorithm 1.7

The main scope of this function is to identify and manage all the possible sensitive groups of a dataset. To this aim, this function
akes as input the dataset 𝐷, the categorical sensitive variables 𝑆1,… , 𝑆𝑛, the label 𝐿 and other parameters useful for the recursion:

a counter 𝑖 initially set to 0 (used to count the number of explored sensitive variables), an array 𝐺 initially empty (used to collect
the balanced, sensitive groups), and a boolean condition initially set to 𝑡𝑟𝑢𝑒 (used to define the condition needed to identify the
different sensitive groups). Lines from 2 to 9 define the base condition of the function. This condition checks if all the sensitive
variables needed to identify a sensitive group have been explored (i.e., the counter 𝑖 equals the number of sensitive variables). If
so, the algorithm iterates the possible values of the label and creates, for each of them, a corresponding sensitive group 𝑔 is defined
as {𝑋 ∈ 𝐷|𝑆1 == 𝑠1 ∧ 𝑆2 == 𝑠2 ∧⋯ ∧ 𝑆𝑛 == 𝑠𝑛 ∧ 𝐿 == 𝑙}, where 𝑠1,… , 𝑠𝑛 are possible values of the sensitive variables and 𝑙 is a
value of the label.

Then, for each group, the algorithm computes expected and observed sizes. These two values are defined respectively as:

𝑊𝑒𝑥𝑝 =
|{𝑋 ∈ 𝐷|𝑆 = 𝑠}|

|𝐷|

∗
|{𝑋 ∈ 𝐷|𝐿 = 𝑙}|

|𝐷|

(4)

𝑊𝑜𝑏𝑠 =
|{𝑋 ∈ 𝐷|𝑆 = 𝑠 ∧ 𝐿 = 𝑙}|

|𝐷|

(5)

where 𝑆 = 𝑠 is a generic condition on the value of the sensitive variables8 (i.e., condition variable in algorithm 1) and 𝐿 = 𝑙 is a
ondition on the label’s value. It is worth noting that |{𝑋 ∈ 𝐷|𝑆 = 𝑠 ∧ 𝐿 = 𝑙}| is equal to the size of the sensitive group 𝑔 identified
y the conditions 𝑆 = 𝑠 and 𝐿 = 𝑙.

Next, the algorithm balances the group by invoking the BALANCE function (listing Algorithm 2). This function implements the
alancing strategies described in Section 3.2. Finally, the approach adds the balanced group 𝑔𝑏 to the array 𝐺 (used to collect all
he balanced groups) and returns it.

Lines from 11 to 14 identify the recursion point of the function. The purpose of the recursion is to build the condition needed
o determine the sensitive groups dynamically. In particular, if the algorithm has not explored all the sensitive variables (i.e., the
alue of 𝑖 is not equal to the number of sensitive variables), the algorithm starts exploring a new one (variable 𝑆𝑖 in the code).
he exploration is done by iterating all the possible values of the current sensitive variable 𝑆𝑖. Each value of the sensitive variable
orresponds to a new sensitive group that must be identified and balanced. Each identified sensitive group is collected inside a
emporary set 𝐺′. The returning set of sensitive groups 𝐺′ partially identified by the given sub-condition is then merged with the
iven set of sensitive groups 𝐺.

Finally, lines from 15 to 19 define the end condition of the function. In particular, the total number of sensitive groups obtainable
rom a dataset with 𝑛 sensitive variables and a label 𝐿 is equal to the product of all the possible values of the sensitive variable and
he values of the label, that is:

|𝐿| ∗

( 𝑛
∏

𝑖=1
|𝑆𝑖|

)

f the length of 𝐺 is equal to this value, then the function has considered and balanced all the groups and returns the final sampled
ataset 𝐷𝑆 . Otherwise, the function, being in the middle of the recursion returns 𝐺, will be again merged with the result of the
revious recursive calls. This procedure shown in Algorithm 1 can also be applied to binary classification problems; in that case,
he number of sensitive groups will be equal to

2 ∗

( 𝑛
∏

𝑖=1
|𝑆𝑖|

)

We like to note that, even if the number of sensitive groups grows exponentially with respect to the number of sensitive variables,
his number is still manageable in the real-world case scenario where a small amount of sensitive variables are typically considered
e.g., solely 32 groups are present in a multi-class classification task where four classes and three binary sensitive variables are
onsidered).

To better clarify the behavior of DEMV, Fig. 2 shows an example execution of the first steps of the algorithm on a dataset with
ne binary sensitive variable and a binary label. For the sake of simplicity in this example we are using binary variables, but as
ighlighted in Section 4, DEMV can also be applied to multi-class labels and categorical sensitive variables. Fig. 2(a) represents step
of the algorithm, in which the counter is set to 0, and the condition is set to 𝑡𝑟𝑢𝑒. Next, the algorithm starts a depth-first exploration
f the depicted tree. In Fig. 2(b), the algorithm adds the condition 𝑆1 == 0 to the initial 𝑡𝑟𝑢𝑒 condition, and in Fig. 2(c) the condition
𝐿 == + is also added. Fig. 2(d) depicts the identification of the first sensitive group defined as {𝑋 ∈ 𝐷|𝑆1 == 0∧𝑆𝐿 == +}. Finally,
igs. 2(e) and 2(f) show the identification of the second sensitive group, this time defined as {𝑋 ∈ 𝐷|𝑆1 == 0 ∧ 𝑆𝐿 == −}. The
lgorithm then proceeds to balance the other sensitive groups. When all the groups have been balanced, they are merged to return
fully balanced dataset.

7 We recall that a recursive function is generally made of three main sections: a base condition, which defines the main return statement of the function, a
ecursion point in which the function calls itself, and an end condition representing the end of the process.

8 The variables can be binary, discrete or categorical ones
7
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Fig. 2. Example execution of the first steps of DEMV algorithm.

.2. Balancing strategies

The group-balancing operation is implemented by the BALANCE function, whose pseudo-code is depicted in listing Algorithm
. This function takes as input the group 𝑔 and the expected (𝑊𝑒𝑥𝑝) and observed size (𝑊𝑜𝑏𝑠). The core of this algorithm is a loop
hat checks if the value of 𝑊𝑒𝑥𝑝∖𝑊𝑜𝑏𝑠 is different from 1. If the ratio is < 1, then it means that the size of the group is higher than
xpected. In this case the algorithm selects an index in the range of (0, 𝑠𝑖𝑧𝑒(𝑔) − 1) accordingly to the deletion strategy REMOVE
o remove the corresponding item from the group. Otherwise, if the ratio is > 1, then the size of the observed group is lower than
xpected. In this case, the algorithm generates a new sample by using the generative strategy GENERATE, then it adds the new
enerated sensitive group. Finally, the algorithm returns the balanced group when the while condition becomes true.

To better understand the overall process we need to also discuss the two underlying removal and generative strategies. The
implest of the two strategies is the removal one, where the removal candidate must be selected among the samples already present
n the group. The removal strategy implemented in REMOVE function is typically based on a sampling function that follows a given
istribution (e.g. uniform).

Conversely, the generative strategy implemented in the GENERATE function might be the most tricky since it is responsible for
roviding new samples used by the subsequent learning task. For instance, a simple approach might be to duplicate one of the
8
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Algorithm 2: Pseudo-code of BALANCE
Input: (Group 𝑔, Expected size 𝑊𝑒𝑥𝑝, Observed size 𝑊𝑜𝑏𝑠)
Output: Balanced group 𝑔

1 while 𝑊𝑒𝑥𝑝∖𝑊𝑜𝑏𝑠 ! = 1 do
/* the group is not balanced */

2 if 𝑊𝑒𝑥𝑝∖𝑊𝑜𝑏𝑠 < 1 then
/* the size of the group is higher than expected, so we must remove an item from the

group */
3 𝑖 = REMOVE(0,… , 𝑠𝑖𝑧𝑒(𝑔) − 1)
4 remove item 𝑖 from 𝑔

5 else if 𝑊𝑒𝑥𝑝∖𝑊𝑜𝑏𝑠 > 1 then
/* the size of the group is lower than expected, so we must add a new item to the group */

6 𝑖 = GENERATE()
7 add item 𝑖 to 𝑔

8 recompute 𝑊𝑜𝑏𝑠

9 return 𝑔

samples already present in the group according to a sampling function that follows a certain distribution (e.g. uniform). It might
be also possible to adopt other well-known generative approaches in the literature. In this work, we adopt a uniform sampling for
the removal step while we will test and discuss three generative approaches (i.e. Uniform Sampling, SMOTE and ADASYN) in the
experimental Section 4.

4. Experimental analysis

This section describes the experiments we have conducted to evaluate DEMV: Section 4.1 reports the used experimental setting
omprising the selected metrics and baselines; Section 4.2 describes the employed datasets and their characteristics; Section 4.3
eports on the analysis we have performed to select the best instance generation strategy to be plugged-in DEMV; Section 4.4 shows
EMV’s evaluation results both in multi-class and binary classification; and finally, Section 4.5 reports a description on how to

eproduce the performed experiments using the available code. We like to remark that the full implementation of DEMV and the
ode to reproduce all the performed experiments is available at the Territori Aperti RI9 and on GitHub10 as well.

4.1. Experimental setting

We evaluate DEMV under heterogeneous conditions by applying a set of binary and multi-class datasets. As a base classifier, we
used a Logistic Regression model (Menard, 2002) since it is very efficient from a computational point of view, natively supports
multi-class classification, and being a white-box method, it is comprehensible and promotes transparency. In addition, we also
performed some specific experiments involving more sophisticated classifiers to analyze the impact of DEMV on these methods. The
involved classifiers are: Gradient Boosting (Friedman, 2002), Support Vector Machine (SVM) (Noble, 2006), and Neural Network
with ReLU activation function (Hagan, Demuth, & Beale, 1997). For all the experiments, we adopt the implementation from the
scikit-learn library (Pedregosa et al., 2011) with the default hyper-parameters.

For all the experiments, we compute the following metrics on the testing set:

• Absolute Statistical Parity (SP), defined as the absolute value of the original Statistical Parity from (Dwork et al., 2012). We
normalized this metric to reduce his variability and better evaluate each method’s performance (i.e., avoid situations in which
we measure values like 0.2 and −0.2 in two different runs, resulting in a mean of zero with a high standard deviation). The
optimal value is zero.

• Disparate Impact (DI) (Feldman et al., 2015), where the optimal value is one. To avoid the occurrence of reverse bias (i.e., metric
value firmly higher than one), we adopt the formulation proposed by Radovanović, Petrović, Delibašić, and Suknović (2021):

DI = 𝑚𝑖𝑛
(

𝑝(𝑦̂ = 1|𝑠 = 1)
𝑝(𝑦̂ = 1|𝑠 = 0)

,
𝑝(𝑦̂ = 1|𝑠 = 0)
𝑝(𝑦̂ = 1|𝑠 = 1)

)

(6)

This metric computes the minimum among two formulations of DI wherein one, the unprivileged group (𝑠 = 0) is at the
numerator, and the other is at the denominator. The metric value is between zero and one, where one means complete fairness.

• Absolute Equalized Odds (EO), defined as the absolute value of the original Equalized Odds from (Hardt et al., 2016). We
normalized this metric for the same reasons as SP. The optimal value is zero.

9 https://bit.ly/3scwtaB
10 https://github.com/giordanoDaloisio/demv2022
9
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Table 1
Description of the performed experiments.

Experiment Reference
section

Scope Task Involved
classifier

Number of
sensitive vars

Involved
debiaser methods

1 4.3 Comparison of different implementations
of DEMV embedding diverse generative
strategies both in binary and multi-class
classification

Binary and
multi-class

Logistic Regression 2 DEMV Uniform
DEMV Smote
DEMV Adasyn

2 4.4.1

Analyze the behavior exposed by
debiaser methods with sensitive groups
identified by a different number of
sensitive variables

Binary Logistic Regression

1 No one
EG
Grid
Blackbox
DEMV

2 No one
EG
Grid
DEMV

3 No one
EG
Grid
DEMV

3 4.4.2

Analyze the behavior exposed by
debiaser methods with sensitive groups
identified by a different number of
sensitive variables

Multi-class Logistic Regression

1 No one
EG
Grid
Blackbox
DEMV

2 No one
EG
Grid
DEMV

3 No one
EG
Grid
DEMV

4 4.4.3 Analyze the behavior exposed by
debiaser methods involving more
sophisticated classifiers both in binary
and multi-class classification

Binary and
multi-class

Logistic Regressiona

Gradient Boosting
Support Vector Machine
Neural Network

2 No one
EG
Grid
DEMV

aThis classifier has not been directly employed in this experiment, but for clearness we report the results obtained in the previous experiments.

• Zero–one Loss (ZO Loss) (Domingos & Pazzani, 1997), where the optimal value is zero.
• Accuracy (Acc) (Rosenfield & Fitzpatrick-Lins, 1986), where the optimal value is one.
• Harmonic Mean (H-Mean) (Ferger, 1931) of the above metrics. In particular, concerning the metrics whose optimal value is

zero (i.e., SP, EO, and ZO Loss), we beforehand perform a value’s permutation to have the optimal value equal to one, then
we compute the H-Mean using these new values. Formally, H-Mean is computed as follows:

H-Mean = 5
1

(1−|𝑆𝑃 |) +
1

(1−|𝐸𝑂|) +
1

(1−|𝑍𝑂𝐿𝑜𝑠𝑠|) +
1
𝐷𝐼 + 1

𝐴𝑐𝑐

(7)

Table 1 shows the list of performed experiments. Specifically, we performed four main sets of experiments.
The first is the comparison of different implementations of DEMV embedding diverse generative strategies (see Section 4.3). We

onsider the following three strategies:

• Random sampling on Uniform Distribution (UNIFORM), where the algorithm duplicates an item present in the group with a
uniform probability distribution;

• Synthetic Minority Oversampling Technique (SMOTE) from (Chawla et al., 2002);
• Adaptive Synthetic Sampling Approach (ADASYN) from (He et al., 2008).

his analysis has been performed in binary and multi-class classification tasks on all the considered datasets considering two sensitive
ariables and using the Logistic Regression as a classifier.

After identifying and settling on the best generation strategy, we compare DEMV with the selected baselines by performing three
ain sets of experiments (please refer to Section 4.4). Experiments two and three in Table 1 are focused on analyzing the behavior

xposed by debiaser methods with sensitive groups identified by one, two and three sensitive variables. Experiment two focuses on
inary classification task (see Section 4.4.1), while experiment three focuses on multi-class classification task (see Section 4.4.2).
10

n both these experiments we employed a Logistic Regression model as a classifier. To have a more concrete representation of the
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Fig. 3. Evaluation procedure of DEMV for each train–test fold.

behavior of DEMV and the other baselines, at the end of Section 4.4.2 we also report a comparison of normalized confusion matrices
for the privileged and unprivileged groups of a particular dataset.

Finally, experiment four in Table 1, is devoted to analyze the behavior exposed by debiaser methods involving more sophisticated
classifiers: Gradient Boosting (Friedman, 2002), Support Vector Machine (SVM) (Noble, 2006), and Neural Network with ReLU
activation function (Hagan et al., 1997). Since these models are more complex from a computational point of view, this last
experiment has been performed in binary and multi-class classification tasks on a reduced but heterogeneous dataset considering
the two established sensitive variables (see Section 4.4.3).

In all the experiments (with the exception of experiment one) we compare with the following baselines:

• a biased classifier, where no debiasing method is applied, identified in the following by No one;
• the Exponentiated Gradient (EG) and Grid Search (Grid) in-processing methods from (Agarwal et al., 2018)11;
• the Blackbox post-processing method from (Putzel & Lee, 2022).12 This method has been employed only in the analyses with

one sensitive variable since, by the time of this paper, it does not support multiple sensitive variables.

Concerning Exponentiated Gradient and Grid Search, in agreement with the documentation available online (Fairlearn, 2022), we
used the Absolute Statistical Parity and the Zero–one Loss as constraints for binary and multi-class problems, respectively. Instead,
Blackbox does not require a specific configuration of the hyperparameters.

For all the experiments showed in Table 1 we follow a 10-fold cross-validation (Refaeilzadeh, Tang, & Liu, 2016), repeated 30
times for those methods that expose a stochastic behavior (namely DEMV) as depicted in Fig. 3. In particular, to better reproduce a
production scenario, we apply DEMV only on the training set and train the Logistic Regression classifier using the balanced dataset.
Then, we predict the labels using the original biased testing set and compute the metrics described above. In addition, since the
balancing of the groups has a stochastic behavior, for each train–test fold, we repeat the aforementioned process 30 times so that
we can investigate how the removal or duplication of different items can influence the accuracy and the fairness of the classifier.

In all the performed experiments, we report the mean and standard deviation of all the metrics calculated over all the involved
datasets. In the representation of such metrics we use bar plots where larger bars depict the mean of the metrics and thin bars show
their standard deviation. In representing plots, we distinguish between metrics whose optimal value is 0 (showed on the left side of
the figures) and metrics whose optimal value is 1 (reported on the right side of the figures).

4.2. Employed datasets

The experiments are conducted by employing nine well-known datasets (3 for the binary classification and 6 for the multi-class
task) from the Bias and Fairness literature. For each dataset, we consider sensitive groups identified by three sensitive variables: two
variables are the ones established as sensitive variables by the literature, while the third one is selected, for each dataset, among the
variables that could create discrimination, like age, education and so on. Note that PARK dataset has been excluded by the analysis
with three sensitive variables because it does not have a third variable suitable for discrimination.

Table 2 depicts the descriptive statistics for the employed datasets. Concerning the sensitive variables, we highlight in bold the
two ones established as sensitive by the literature. In the following, it is provided a brief description of the 9 considered datasets.

1. Adult Income (ADULT) (Kohavi et al., 1996): This binary dataset comprises 30,940 items by 102 features (one-hot encoded).
The goal is to predict if a person has an income higher than 50k a year. This information is represented by the income
variable. The protected attributes are sex, and race and the unprivileged group is black women (items with sex and race
equal to zero). In the analysis with three sensitive variables, we also introduced the bachelor variable, indicating if a

11 The adopted implementation of Exponentiated Gradient and Grid Search methods are available on the Fairlearn library (Bird et al., 2020)
12 The considered Blackbox implementation is available at the following link: https://github.com/scotthlee/fairness
11

https://github.com/scotthlee/fairness
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person has a bachelor’s degree or not. In this case, the sensitive group is black women with no bachelor’s degree. The positive
label is high income.

2. ProPublica Recidivism (COMPAS) (Angwin, Larson, Mattu, & Kirchner, 2016): This binary dataset is made of 6,167 samples
by 399 attributes. The sensitive variables are sex and race. The goal is to predict if a person will recidivate in the next two
years. The favorable label, in this case, is no, and the unprivileged group is Non-Caucasian men (items with sex and race
equal to zero). In the test with three sensitive variables, we also introduced the age attribute. In this case, the sensitive group
is Non-Caucasian men with less than 50 years.

3. German Credit (GERMAN) (Ratanamahatana & Gunopulos, 2002): This binary dataset classifies people described by a set
of attributes as good or bad credit risks (credit variable). The dataset consists of 1,000 instances by 59 features (one-hot
encoded). The sensitive variables are sex, and age and the unprivileged group is women with less than 25 years. The positive
label is low credit risk. In the experiment with three sensitive variables, we also introduced the investment_as_income
variable, meaning if a person has more than the 30% of his income invested. In this case, the sensitive group is women with
less than 25 years and with less than 30% of their income invested.

4. Contraceptive Method Choice (CMC) (Lim, Loh, & Shih, 2000): This multi-class dataset comprises 1,473 instances and ten
columns about women’s contraceptive method choice (not-use, short-use, and long-use). The sensitive variables are religion
and work. The unprivileged group is Islamic women who do not work (both values equal one), and the positive label is long-term
use. In the analysis with three sensitive variables, we introduced the education (edu) variable. The sensitive group, in this
case, is Islamic women who do not work and with no education.

5. Communities and Crime (CRIME) (Redmond & Baveja, 2002): This multi-class dataset is made of 1,994 instances by 100
attributes and contains information about the per-capita violent crimes in a community (variable ViolentCrimesPerPop).
Since the label is continuous, we transformed it by grouping the values in 6 classes using equidistant quantiles. Follow-
ing (Calders, Karim, Kamiran, Ali, & Zhang, 2013) the sensitive attribute is the percentage of the black population, but we
also considered the ratio of the Hispanic population to have two sensitive variables. The unprivileged group is communities
with a high percentage of both black and Hispanic people (both variables equal to 1), and the positive label is 100 (class of
low rate of crimes). In the experiment with three sensitive variables, we also introduced the MedRent variable, showing the
average price of rents in a community. In this case, the unprivileged group is communities with a high percentage of black and
Hispanic people and a low cost of the rent.

6. Drug Usage (DRUG) (Fehrman, Muhammad, Mirkes, Egan, & Gorban, 2017): This multi-class dataset has 1,885 instances
and 15 attributes about the frequency of drugs consumption (variable y). The classes are never used, not used last year, and
used last year. The sensitive variables are race and gender and the unprivileged group are white women (race equal to
one and gender equal to zero). The positive label is never used. In the test with three sensitive variables, we also used the
age variable. In this case, the sensitive group is white women less than 50 years.

7. Law School Admission (LAW) (Austin et al., 2016): This multi-class dataset comprises 20,694 samples by 14 attributes and
contains information about the bar passage data of Law School students. We grouped the continuous label (GPA) in 3 groups
using equidistant quantiles. The sensitive variables are race and gender and the unprivileged group are black women (both
variables equal to one), and the positive label is 2 (class of high scores). In the analyses with three sensitive variables, we also
introduced the age variable. In the experiments with three sensitive variables, we also used the age variable. In this case,
the unprivileged group is black women with less than 61 years.

8. Parkinson’s Telemonitoring (PARK) (Tsanas, Little, McSharry, & Ramig, 2009): This multi-class dataset comprises 5875
items and 19 features about Unified Parkinson’s Disease Rating Scale (UPDRS) score classification (variable score_cut).
The classes are Mild, Moderate and Severe. The sensitive variables are sex and age and the unprivileged group are males
with more than 65 years (age equal to one and sex equal to zero). Since this dataset does not have a third variable suited
for identifying sensitive groups, we used it only in the experiments with one and two sensitive variables.

9. Wine Quality (WINE) (Cortez, Cerdeira, Almeida, Matos, & Reis, 2009): This multi-class dataset comprises 6,438 instances
and 13 attributes about wine quality (variable quality). The classes are four increasing values indicating quality (the
higher, the better). The sensitive attributes are the wine’s color (type variable) and the alcohol percentage lower or higher
than 10 (alcohol variable). The unprivileged group is white wine with an alcohol percentage ≤ 10, and the positive label is
6 (high quality). In the experiment with three sensitive variables, we also introduced the density variable. In this case, the
unprivileged group is white wine with an alcohol percentage ≤ 10 and with a density less than 1.1%.

4.3. Selection of the best generative strategy

In this section, we show the experiments made to select the best instance generation strategy to plug-in in DEMV. As described in
Section 4.1, we consider the following generation strategies: Uniform sampling, SMOTE, and ADASYN. We perform the comparison
with both binary and multi-class datasets using, for each dataset, sensitive groups identified by the two sensitive variables specified
in literature. For the considered metrics (i.e., the ones introduced in Section 4.1), we report in Appendix A the tables showing the
detailed values calculated. While in this section we show their mean and standard deviation calculated over all the datasets.

The aggregated metrics for multi-class datasets are shown in Fig. 4. From this first analysis, Uniform sampling and ADASYN give
similar results in fairness and accuracy, while SMOTE behaves worse.
12
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Table 2
Descriptive statistics for the employed Datasets (boldface are highlighted the protected variables established in the original dataset).

Adult Compas German CMC Crime Drug Law Park Wine

Scope Social Justice Social Social Justice Social Education Health Food

Instances 30,940 6,167 1,000 1473 1,994 1,885 20,427 5,875 6,438

Features 102 399 59 10 100 15 14 19 13

Classes 2 2 2 3 6 3 3 3 4

Positive label high
income

no low-credit
risk

long-term
use

100
(low
percentage
class)

never
used

2
(high scores
class)

mild high
quality

Sensitive
variables

sex
race
bachelors

sex
race
age

sex
age
investment

religion
work
edu

black
hisp
Medium Rent

race
gender
age

gender
race
age

age
sex

type
alcohol
density

Percentage
of sensitive
group with
two sensitive vars

5.02% 54.71% 10.50% 64.83% 23.62% 45.78% 8.42% 39.45% 11.40%

Fig. 4. Comparison of generation strategies of DEMV for multi-class classification with two sensitive variables.

Fig. 5 confirms that, also in the case of binary classification, the Uniform sampling and ADASYN have comparable performances
concerning accuracy and fairness.

Since both the Uniform sampling and ADASYN generative strategies expose similar performance in terms of classifier’s fairness
and accuracy, we decide to analyze their computational performances in order to select the best and efficient strategy to embed in
DEMV. In particular, we focused on their execution time (expressed in seconds) that we report in Fig. 6.

This experiment has been conducted on a MacBook Air M1 2020 with 16 GB of RAM.
The results show that DEMV implementing ADASYN takes much more time for completion, especially in larger datasets, while

DEMV with Uniform always takes a reasonable execution time.
Considering all the analysis made, we adopt the Uniform sampling as the generation strategy to compare against the baselines

because the obtained metrics are comparable to ADASYN and its execution time is lower.

4.4. DEMV evaluation in classification tasks

This section presents the quantitative results of the DEMV’s evaluation. We compare the performance of DEMV with the selected
baselines shown in Section 4.1.

Even if DEMV is a debiaser for the multi-class classification problem, we decided to evaluate it also in binary classification
problems to identify its potentialities in this scenario (see Section 4.4.1). However, since the binary classification task is not the
primary scope of our work, we decide for readability to show, for each method, the variation of H-Means at the increasing of
sensitive variables. For interested readers, detailed results are reported in Appendix B.
13
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Fig. 5. Comparison of generation strategies of DEMV for binary classification.

Fig. 6. Execution time in seconds of DEMV Uniform and DEMV Adasyn in multi-class classifications tasks.

In Section 4.4.2, we present the DEMV’s evaluation with multi-class classification tasks. In this case, we report the mean and
tandard deviation of each measure described in Section 4 using the bar plots. Then, as an overall view, we show the variation of
ach method’s H-Mean at increasing sensitive variables. Detailed metrics for each dataset are provided through tables in Appendix C.

Finally, in both binary and multi-class classification scenarios:

• for each dataset, the variation of H-Means, at the increasing number of sensitive variables is reported using line plots in which
each line identifies one method. We recall that since the Blackbox algorithm does not support multiple sensitive variables, it
has been applied only in the experiments involving sensitive groups identified by one sensitive variable, so it is represented
as a point in such plots;

• as already said, each dataset has two sensitive variables. To run the experiment with one sensitive variable, we averaged the
results of two independent experiments, one for each sensitive variable;

• it is reported the statistical significance of all experiments computed using the ANOVA test in each analysis (McDonald, 2009).
This test checks for the null hypothesis that all groups have the same mean; if the probability value (p-value) is less than 0.05,
the test rejects the null hypothesis, which means that the groups have a different mean value. The ANOVA tables showing the
test results are shown in Appendix D as well.
14
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Fig. 7. Comparison of overall H-Mean at different number of sensitive variables for binary classification datasets.

Table 3
Overall H-Mean of all methods with different sensitive variables in the binary classification context.

Sensitive variables Methods

No one Blackbox EG Grid DEMV

1 0.648 ± 0.034 0.835 ± 0.031 0.835 ± 0.048 0.761 ± 0.056 0.777 ± 0.036
2 0.558 ± 0.09 – 0.775 ± 0.077 0.197 ± 0.342 0.723 ± 0.072
3 0.485 ± 0.115 – 0.454 ± 0.081 0.486 ± 0.243 0.651 ± 0.111

4.4.1. Comparison in the binary classification task
In this section, we compare DEMV with the other baselines in a binary classification context. It is worth noting that, in the

ontext of binary classification with one sensitive variable, DEMV coincides with the original Sampling method (Kamiran & Calders,
012) it derives from.

The results of the experiments are reported in Fig. 7. As reported in the figure, DEMV (represented with the red line) better
itigates the bias with an arbitrary number of sensitive variables, producing results that are generally competitive and even better
hen more than two variables are considered. A closer analysis lets us notice that EG outperforms the other methods when the
umber of sensitive variables is one or two. At the same time, it dramatically fails when three sensitive variables are considered.
lackbox method (reported by a single triangle in correspondence to one variable) is a good performer only when one sensitive
ariable is needed. In contrast, its adoption will not be applicable in cases where more sensitive variables must be considered.

The conducted ANOVA test, whose detailed results are reported in Appendix D, confirms the statistical significance of all the
xperiments made in case of the binary classification task.

To give an overall view of the performances of each method, we provide a synthetic version of the above results in Table 3 where,
or each method, we report the average of the H-Mean computed overall for the considered datasets. This summary confirms what
e observed in the details above; that is, in binary classification with one sensitive variable, Blackbox and EG perform similarly.
G also behaves well in case of two variables. Finally, DEMV produces competitive results with one or two sensitive variables while
utperforming the other baselines when three variables are needed. However, no clear winner can be picked out of the shelf, and
ore evaluation should be provided to determine which method to apply in different settings, including dataset characteristics. In

ddition, a quality that can be decisive in selecting the best method is the computational complexity, which we will consider in the
uture for a better evaluation of DEMV.

.4.2. Comparison in the multi-class classification task
In this subsection, we report the results of the experiments conducted in the context of multi-class classification.
The experiment’s results are reported in Figs. 8 and 9. The former reports the mean and the standard deviation of the metrics

omputed by each method on overall datasets, distinguishing among the usage of one (a), two (b), and three (c) sensitive variables.
he latter instead, provides a different view, and for each dataset, it reports the values of H-Mean for each method at the increasing
f sensitive variables.

In particular, Fig. 8(a) focuses on the experiments involving one sensitive variable. The high standard deviation of all metrics is
xplained by the fact that the metrics are here calculated putting together the results of two separate experiments. From the figure
e can see that, in average, DEMV overcomes all the baselines. In addition, we observe that DEMV is the method performing in a
ore stable and coherent way. This is highlighted by an overall lower standard deviation for all metrics.

The performances of DEMV in case of one variable are confirmed by Fig. 9, where it can be seen that DEMV overcomes the
aselines in all dataset with the only exception of CMC (in which the best method is Grid), and Wine (in which the best method is
15
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Fig. 8. Comparison of DEMV with the baselines in multi-class classification.
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Fig. 9. Comparison of overall H-Mean at different number of sensitive variables for multi-class classification datasets.

Table 4
Overall H-Mean of all methods with different sensitive variables in the multi-class classification context.

Sensitive variables Methods

No one Blackbox EG Grid DEMV

1 0.568 ± 0.085 0.479 ± 0.211 0.582 ± 0.09 0.566 ± 0.121 0.682 ± 0.072
2 0.493 ± 0.16 – 0.505 ± 0.16 0.58 ± 0.063 0.677 ± 0.081
3 0.486 ± 0.135 – 0.49 ± 0.128 0.529 ± 0.182 0.646 ± 0.08

More detailed results are reported in Table 15 in Appendix C.
Finally, the ANOVA test (whose detailed results are reported in Table 22.a of Appendix D) confirms the statistical significance

f the experiments with the exception of the metrics EO, which has a 𝑝-value of 0.262. The fact that the observations of EO are not
statistically significant can be explained by the high standard deviation of such metric in Grid and especially in Blackbox.

Fig. 8(b) reports the results of the experiments with sensitive groups identified by two sensitive variables. As before, DEMV
overcomes all the other baselines in all the involved datasets, and its stability is confirmed by an overall lower standard deviation.
Fig. 9 shows that, also in this context, DEMV outperforms the baselines in all datasets. Detailed results in the case of two sensitive
variables are reported in Table 16 of Appendix C.

The ANOVA test confirms the statistical relevance of all the results (see Table 22.b in Table 22).
The above considerations are also confirmed in the case of three involved sensitive variables. The results are reported in Fig. 8(c)

and in Table 17 of Appendix C. We recall that the Park dataset has not been used in this experiment since it does not have a third
variable suitable to be treated as sensitive.

In this case, from Fig. 9 it can be seen that Grid performs slightly better in CMC (with a delta of H-Mean of about 0.01 points)
and Wine (with a delta of 0.005). As for the other two experiments, DEMV performs more consistently with an overall standard
deviation lower than the different baselines. Again, the ANOVA test confirms the statistical significance of the experiments (see
Table 22.c in Table 22), with the only exception of EO metrics (with a 𝑝-value of 0.27) which has a high variability especially with
EG and with the biased classifier (indentified by No one label) in the figure.

As for the experiments involving binary classification datasets, in order to have a complete concise overview, in Table 4 we
report the overall H-Mean of all the methods in the three performed experiments overall the datasets. Note that, DEMV generally
overcomes the other baselines in all the explored contexts increasing the H-Mean by up to 0.2 points with respect to the biased
classifier (i.e., No one in the table) in the experiments with two and three sensitive variables.

Finally, to have a more concrete representation of the behavior of all the analyzed methods, in Fig. 10 we report a comparison
f the normalized confusion matrices (Krstinić, Braović, Šerić, & Božić-Štulić, 2020) for the privileged and unprivileged (i.e., biased)
17
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Fig. 10. Normalized confusion matrices of privileged and unprivileged groups for each baseline on Drug dataset.
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Table 5
Overall H-Mean of all methods with different classifiers in the binary classification context.

Classifier Methods

No one EG Grid DEMV

Logistic Regression 0.558 ± 0.09 0.775 ± 0.077 0.197 ± 0.342 0.723 ± 0.072
Gradient Boosting 0.588 ± 0.19 0.476 ± 0.383 0.582 ± 0.228 0.724 ± 0.057
SVM 0.57 ± 0.201 0.554 ± 0.238 0.59 ± 0.205 0.721 ± 0.066
Neural Network 0.584 ± 0.202 – – 0.69 ± 0.127

groups of the Drug dataset with two sensitive variables. We decided to choose the Drug dataset for this experiment since it is among
the ones having a high bias and showing better the inequality among the privileged and unprivileged groups (confirmed also by
the values of the fairness metrics for the biased classifier showed in Table 16 of Appendix C). In all the matrices, we highlight in
red and in boldface the predicted positive label (i.e., never), which identifies the column of the matrix affected by bias (highlighted
n red as well). In particular, Fig. 10(a) shows the confusion matrices of the biased classifier. From the picture, it can be seen how
he probability of the privileged group having a predicted positive label (i.e., column corresponding to never) is much higher than

the unprivileged group. The confusion matrices related to EG and Grid (Figs. 10(b) and 10(c) respectively) do not differ much from
the ones of the biased classifier, meaning that these two methods are not able to improve the fairness of the classifier. Instead, in
Fig. 10(d), it can be seen how DEMV is able to balance these two matrices, and the probability of having the positive label predicted
is almost the same for the two groups, meaning that the fairness of the classifier has increased.

4.4.3. Comparison using more sophisticated classifiers
In this subsection, we report the results of the experiments conducted in binary and multi-class classification context using more

complex classifiers. As already described in Section 4.1, the employed classifiers are: Gradient Boosting, Support Vector Machine
(SVM), and Neural Network with ReLU activation function. Since these models are more complex from a computational point of
iew, we performed these experiments on a reduced, but heterogeneous set of data using sensitive groups identified by two sensitive
ariables. The selected datasets are: Adult (binary large dataset), COMPAS (binary small dataset), CMC (multi-class small dataset),
nd Law (multi-class large dataset).

Finally, considering the debaiser approaches, it is worth noting that EG and Grid cannot be applied when a Neural Network model
s used as classifier. In fact, EG and Grid apply arbitrary weights to the instances in order to remove bias, but Neural Networks by
heir nature do not allow the specification of weights to the instances. For this reason, in the experiments involving Neural Networks,
e only compared the performance of the original classifier with the performance of the classifiers after the application of DEMV.

Concerning binary classification, Table 5 reports the overall H-Mean of all the baselines for each involved classifier overall the
nvolved datasets,13 detailed results are reported in Appendix B as well. Note how, differently from the experiments with a Logistic
egression classifier, DEMV overcomes the other baselines in all of the performed analyses, with a delta up to around 0.2 points in
ase of EG with a Gradient Boosting classifier. The Anova test, whose results are reported in Appendix D, confirms the statistical
ignificance of the results.

Concerning multi-class classification, Fig. 11 reports the mean and the standard deviation of all the metrics computed overall
atasets. In particular, Fig. 11(a) shows the results of the experiments involving the Gradient Boosting classifier. In this context,
EMV outperforms the baselines under the SP and EO definitions of fairness, while it almost equals EG under the DI definition of

airness. More detailed results are reported in the Table 18 of Appendix C. The ANOVA test confirms the statistical significance of this
xperiment, with the only exception of Zero One Loss which has a 𝑝-value of 0.732 (see Table 24.a of Appendix D). Fig. 11(b), reports

instead the results of the experiments involving Support Vector Machines. In this context, it can be seen how DEMV overcomes the
baselines under all the considered definitions of fairness, keeping an accuracy level almost equal to the original biased classifier.
Detailed results are reported in Table 19 of Appendix C as well. Also in this case, the ANOVA test confirms the statistical significance
of the results (see Table 24.b of Appendix D). Finally, Fig. 11(c) details the results of the experiments performed with Neural
Networks. We recall that in this case EG and Grid cannot be applied, hence we compared DEMV only with the biased classifier.
Also in this case DEMV is able to improve the fairness of the classifiers keeping an almost unchanged level of accuracy and more
detailed results are reported in Table 20 of Appendix C. The ANOVA test confirms the statistical significance of the results as well
(see Table 24.c of Appendix D).

Table 6 reports the overall H-Means of all the methods for each classifier overall the selected datasets. It can be seen how DEMV
generally overcomes the other baselines with all the selected classifiers with a delta up to around 0.3 points concerning SVM with
Grid method.

13 To have a better overall view, we also reported the measurements computed with a Logistic Regression classifiers, which corresponds to the measures of
19
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Fig. 11. Comparison of DEMV with the baselines in multi-class classification using other classifiers.

4.5. Reproducibility of the experiments

Nowadays, ensuring that the proposed methods and their corresponding results are sound and reliable is one of the challenges
for research in machine learning. To ensure that the findings are valid, it is essential for the experiments to be repeatable and to
20
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yield results and conclusions comparable or identical to the originally reported ones (Pineau et al., 2021). For this reason, we choose
to release the full code of the DEMV algorithm along with the replication package of all the performed experiments. This section is
dedicated to describing how to use such code in order to reproduce the experiments described in the previous sections. We recall
again that the full implementation is available in the Territori Aperti RI and on GitHub as well. The repository also includes a
specification of all the python dependencies required for a correct execution of the code, which can be installed using anaconda.14

or pip15

The program that must be called to replicate the experiments is generatemetrics.py, which is responsible to generate the
measures computed and aggregated in all the experiments of Section 4. Noticing that the code to reproduce the plots presented in
this paper has not been included in the replication package, but can be easily implemented using the metrics generated from the
given program. The code generatemetrics.py can be invoked from the command line through the python interpreter in the
following way:

$ python generatemetrics.py <DATASET> <METHOD> <NUMBER_OF_FEATURES > --sensitivefeature <
SENSITIVE FEATURE?> --classifier <CLASSIFIER?> --cm <CM?>

and accepts the following parameters (please refer also to the README of the GitHub repository for a more precise description
of these parameters):

• DATASET: the dataset on which apply the experiments. Can be one of the datasets described in Section 4.2.
• METHOD: debiaser method to use. Can be one of the debiaser methods employed in this paper or biased in case of no

methods.
• NUMBER OF FEATURES: number of sensitive variables to identify the sensitive groups. Can be an integer up to 3.
• SENSITIVE FEATURE: optional parameter to specify the sensitive variables for the identification of the sensitive groups in

case NUMBER OF FEATURES is equal to one or two. To ensure that the selected variables are truly sensitive, they must be
among the three sensitive variables defined for each dataset in Section 4.2.

• CLASSIFIER: optional parameter to specify a classification method. Can be one of the classifiers employed in the experiments
of this paper. The default is the Logistic Regression classifier.

• CM: optional boolean value to plot the confusion matrices of the two sensitive groups. Default is false.

The following command can also be executed to receive help and information on the requested parameters:

$ python generatemetrics.py -h

The execution of this script will produce a .csv file containing all the measures described in Section 4.1 for each train–test
fold. We like to remark that, in case of DEMV, the number of measures will be equal to 30 times the number of train–test folds (see
the description of the experiment setting in Section 4.1).

To reproduce the experiments of Section 4.3, the script can be called passing as input any of the involved dataset, a number of
sensitive variables equal to 2, and UNIFORM, SMOTE or ADASYN as debiaser method. For instance:

$ python generatemetrics.py cmc uniform 2 --sensitivevariable religion,work

will produce the metrics of the CMC dataset using the DEMV Uniform debiaser strategy. Aggregating the results of the execution of
this script for all of the involved datasets and all of the analyzed generation strategies makes possible to reproduce the experiments
and charts shown in Section 4.3.

Similarly, it is possible to reproduce the experiments of Section 4.4 by running generatemetrics.py on all the combinations
of datasets, methods, number of sensitive variables and classification methods and then aggregating the results. For instance, the
following command:

$ python generatemetrics.py adult eg 3 --classifier gradient

will generate the metrics for the Adult dataset with three sensitive variables, using EG debiaser method and the Gradient Boosting
classifier.

Finally, confusion matrices for the privileged and unprivileged groups can also be created using this script. For instance, the
ommand:

$ python generatemetrics.py crime uniform 3 --cm

will generate the confusion matrices of the Crime dataset for the privileged and unprivileged groups.
It is also possible to refer to the README file on the GitHub repository for a more complete description of the method and the

parameters.

14 https://www.anaconda.com/
15 https://pypi.org/project/pip/
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5. Discussion

In this section, we discuss the results of the experiments conducted in Section 4, by referring to the research questions highlighted
n Section 1. Hence, we can draw the following considerations:

• RQ1. From the experiments conducted in Section 4, we have seen that almost all the baselines can improve fairness in
the binary classification context and classification problems involving one sensitive variable. However, no baselines can
consistently handle bias in the multi-class classification domain with multiple sensitive variables either because they do not
support it (like in the case of Blackbox) or because they perform very poorly (like in the case of EG and Grid). More specifically,
the strengths and weaknesses we have observed for each baseline in the performed experiments are as follows:

– EG. It can improve the fairness in the context of binary classification with very relevant results. It has much more
difficulty in improving fairness in multi-class classification. This weakness might be imputed to the constraint metric
suggested by the authors to be used in the case of multi-class classification, i.e., ZO Loss. In addition, this method is
highly influenced by the involved classification algorithm and cannot be applied if the employed classifier is a Neural
Network.

– Grid. His performances are strictly related to the dataset and the search space size. Since, in our experiments, we always
used a grid size of 20 (the default value of the adopted implementation), this method performed well with some datasets
and worse with others in which a larger search space was needed. This results in very high variability of the overall
obtained metrics. In particular, our experiments observed that Grid performs well with the CMC and Wine multi-class
datasets. At the same time, in the binary classification task, the Grid method exposes a higher variability even in the
same dataset but among a different number of sensitive variables. Finally, as for EG, this method is strongly influenced
by the classification algorithm and cannot used if the employed classifier is a Neural Network.

– Blackbox. This method performs well in mitigating bias in binary and multi-class classification. However, it does not
support multiple sensitive variables. In addition, we observed high variability in the overall metrics that let the method
be considered unstable.

• RQ2. In this work, we have presented the Debiaser for Multiple Variables (DEMV), which is, to the best of our knowledge,
the first pre-processing approach able to improve fairness both in binary and multi-class classification with multiple sensitive
variables. DEMV generally overcomes the other baselines in binary and multi-class classification tasks with one, two, and three
sensitive variables. In addition, being a pre-processing method, DEMV can be applied to a heterogeneous set of classification
methods without impacting or being influenced by their behavior. DEMV is also the method that performs more consistently
in all the experiments, resulting in less variability of the overall metrics.

• RQ3. The generative strategy that must be adopted to rebalance groups in DEMV is the Uniform sampling. The Uniform
generating strategy is preferable from two points of view: (i) is the best performer (among the other generative strategies) in
terms of fairness and accuracy; (ii) its computational complexity is negligible. This approach has been adopted in DEMV and
compared with the other baselines obtaining excellent results.

• RQ4. The performed experiments showed that DEMV can improve the fairness in binary and multi-class classification contexts
with any number of involved sensitive variables keeping a high level of accuracy. In particular, our method overcomes the
other baselines in multi-class classification problems with any number of sensitive variables. In contrast, as expected, other
specifically designed methods may perform better in binary classification with one or two sensitive variables. Instead, we
have noticed that when the sensitive variables are more than two, DEMV overcomes the baselines also in the case of binary
classification. In addition, we have shown how DEMV can consistently improve the fairness of several classification methods
without impacting their behavior, while other debiaser methods behave differently according to the involved classification
method or cannot be applied at all (like EG and Grid with a Neural Network). Finally, we observed that when the size of the
sensitive group is tiny, DEMV has more difficulty improving fairness and finding the optimal group size. This issue can be
explained by the fact that when the group size is small, the addition or removal of a single item impacts more on the expected
and observed size ratio, so the optimal balancing is more complex or impossible to be achieved.

. Conclusion and future work

In this paper, we addressed the problem of bias mitigation in the multi-class classification context by proposing the Debiaser
for Multiple Variables, a novel approach extending the work of Kamiran and Calders (2012) to the multi-class classification domain
with multiple sensitive variables. To the best of our knowledge, DEMV is the first pre-processing method able to handle bias in both
binary and multi-class classification problems with any number of sensitive variables.

We have exhaustively evaluated our algorithm by comparing it with three established baselines using a heterogeneous set of
binary and multi-class datasets, with a different number of sensitive variables, and by employing a heterogeneous set of classification
methods. In addition, we have also evaluated how different instances generation strategies can influence the ability of DEMV in
improving fairness. The conducted experiments show that our method is the better choice to adopt in the multi-class classification
context with one, two, or three sensitive variables. Instead, we noticed how other specifically designed methods might perform better
22

in binary classification with one and two sensitive variables. However, our method is still the better solution in binary classification



Information Processing and Management 60 (2023) 103226G. d’Aloisio et al.

a

W
t
i
v
w
D
o

Table 6
Overall H-Mean of all methods with different classifiers in the multi-class classification context.

Classifier Methods

No one EG Grid DEMV

Logistic Regression 0.493 ± 0.16 0.505 ± 0.16 0.58 ± 0.063 0.677 ± 0.081
Gradient Boosting 0.653 ± 0.061 0.72 ± 0.049 0.607 ± 0.121 0.729 ± 0.018
SVM 0.603 ± 0.069 0.613 ± 0.054 0.392 ± 0.127 0.716 ± 0.012
Neural Network 0.656 ± 0.038 – – 0.728 ± 0.016

Table 7
Evaluation results of generative strategies for binary datasets.

Data Strategy SP EO ZO Loss DI Acc H-Mean

Adult
DEMV Uniform 0.126 ± 0.03 0.26 ± 0.124 0.144 ± 0.015 0.373 ± 0.137 0.834 ± 0.005 0.635 ± 0.117
DEMV SMOTE 0.138 ± 0.014 0.22 ± 0.149 0.153 ± 0.011 0.242 ± 0.075 0.834 ± 0.005 0.543 ± 0.078
DEMV ADASYN 0.126 ± 0.03 0.259 ± 0.123 0.145 ± 0.015 0.374 ± 0.137 0.834 ± 0.005 0.636 ± 0.117

Compas
DEMV Uniform 0.161 ± 0.063 0.29 ± 0.202 0.124 ± 0.043 0.773 ± 0.08 0.664 ± 0.016 0.75 ± 0.099
DEMV SMOTE 0.15 ± 0.043 0.266 ± 0.154 0.133 ± 0.051 0.79 ± 0.056 0.665 ± 0.016 0.767 ± 0.061
DEMV ADASYN 0.16 ± 0.063 0.288 ± 0.203 0.124 ± 0.043 0.774 ± 0.081 0.664 ± 0.016 0.75 ± 0.099

German
DEMV Uniform 0.18 ± 0.134 0.644 ± 0.342 0.278 ± 0.119 0.772 ± 0.163 0.748 ± 0.038 0.616 ± 0.157
DEMV SMOTE 0.183 ± 0.138 0.625 ± 0.381 0.276 ± 0.121 0.771 ± 0.172 0.748 ± 0.039 0.636 ± 0.162
DEMV ADASYN 0.181 ± 0.134 0.649 ± 0.353 0.276 ± 0.12 0.771 ± 0.163 0.747 ± 0.039 0.623 ± 0.146

Mean
DEMV Uniform 0.156 ± 0.027 0.398 ± 0.214 0.182 ± 0.084 0.639 ± 0.231 0.749 ± 0.085 0.667 ± 0.073
DEMV SMOTE 0.157 ± 0.023 0.37 ± 0.222 0.187 ± 0.077 0.601 ± 0.311 0.749 ± 0.085 0.649 ± 0.113
DEMV ADASYN 0.156 ± 0.028 0.399 ± 0.217 0.182 ± 0.082 0.64 ± 0.23 0.748 ± 0.085 0.67 ± 0.07

Table 8
Evaluation results of generative strategies for multi-class datasets.

Data Strategy SP EO ZO Loss DI Acc H-Mean

CMC
DEMV Uniform 0.056 ± 0.029 0.206 ± 0.191 0.233 ± 0.102 0.663 ± 0.157 0.512 ± 0.038 0.694 ± 0.074
DEMV SMOTE 0.048 ± 0.033 0.195 ± 0.138 0.273 ± 0.098 0.722 ± 0.138 0.51 ± 0.038 0.704 ± 0.051
DEMV ADASYN 0.054 ± 0.03 0.213 ± 0.172 0.255 ± 0.101 0.68 ± 0.168 0.514 ± 0.038 0.693 ± 0.07

Crime
DEMV Uniform 0.202 ± 0.049 0.32 ± 0.138 0.164 ± 0.044 0.365 ± 0.143 0.441 ± 0.028 0.542 ± 0.076
DEMV SMOTE 0.242 ± 0.048 0.309 ± 0.146 0.181 ± 0.039 0.292 ± 0.124 0.456 ± 0.03 0.501 ± 0.08
DEMV ADASYN 0.215 ± 0.051 0.316 ± 0.162 0.175 ± 0.054 0.271 ± 0.151 0.454 ± 0.033 0.476 ± 0.122

Drug
DEMV Uniform 0.148 ± 0.047 0.17 ± 0.072 0.337 ± 0.109 0.486 ± 0.13 0.675 ± 0.025 0.662 ± 0.062
DEMV SMOTE 0.185 ± 0.056 0.184 ± 0.058 0.328 ± 0.108 0.41 ± 0.121 0.68 ± 0.029 0.624 ± 0.069
DEMV ADASYN 0.134 ± 0.054 0.198 ± 0.085 0.345 ± 0.106 0.519 ± 0.121 0.671 ± 0.025 0.67 ± 0.059

Law
DEMV Uniform 0.041 ± 0.028 0.145 ± 0.063 0.159 ± 0.022 0.887 ± 0.077 0.512 ± 0.011 0.77 ± 0.019
DEMV SMOTE 0.095 ± 0.031 0.144 ± 0.058 0.172 ± 0.021 0.741 ± 0.087 0.515 ± 0.01 0.737 ± 0.023
DEMV ADASYN 0.044 ± 0.031 0.14 ± 0.055 0.153 ± 0.014 0.883 ± 0.08 0.511 ± 0.012 0.77 ± 0.02

Park
DEMV Uniform 0.062 ± 0.048 0.073 ± 0.046 0.211 ± 0.047 0.809 ± 0.136 0.493 ± 0.024 0.746 ± 0.042
DEMV SMOTE 0.067 ± 0.049 0.085 ± 0.044 0.22 ± 0.048 0.796 ± 0.136 0.496 ± 0.024 0.742 ± 0.048
DEMV ADASYN 0.057 ± 0.032 0.071 ± 0.043 0.211 ± 0.052 0.812 ± 0.1 0.478 ± 0.023 0.742 ± 0.036

Wine
DEMV Uniform 0.106 ± 0.038 0.478 ± 0.264 0.078 ± 0.03 0.858 ± 0.047 0.519 ± 0.018 0.646 ± 0.177
DEMV SMOTE 0.174 ± 0.052 0.787 ± 0.369 0.138 ± 0.046 0.772 ± 0.062 0.538 ± 0.016 0.566 ± 0.154
DEMV ADASYN 0.096 ± 0.039 0.34 ± 0.215 0.083 ± 0.028 0.864 ± 0.053 0.515 ± 0.018 0.722 ± 0.073

Mean
DEMV Uniform 0.102 ± 0.063 0.232 ± 0.145 0.197 ± 0.087 0.678 ± 0.214 0.525 ± 0.079 0.677 ± 0.081
DEMV SMOTE 0.135 ± 0.077 0.284 ± 0.257 0.219 ± 0.071 0.622 ± 0.215 0.533 ± 0.077 0.646 ± 0.099
DEMV ADASYN 0.1 ± 0.066 0.213 ± 0.102 0.204 ± 0.09 0.672 ± 0.239 0.524 ± 0.076 0.679 ± 0.105

problems with three sensitive variables and, being a pre-processing method, it can be successfully applied even with classifiers not
supported by other baselines (e.g., Neural Networks).

Finally, we have seen that the Uniform sampling of existing instances is the best strategy to manipulate groups in terms of
ccuracy and fairness.

In the future, we want to overcome the current main weakness of DEMV, highlighted when the sensitive groups are very small.
e will address this issue by investigating if there are situations that lead to optimal fairness before a complete balance within

he groups. If so, we want to identify further which are the characteristics that leads to these situations. In addition, we want to
mprove our analysis by studying the impact of the size of the dataset and the number of their attributes that are not the sensitive
ariables on DEMV and his behavior. Next, we also want to assess the computational complexity respect to the other baselines and
e want to study the impact that different removal strategies may have during the balancing procedure and thus on the capacity of
EMV to mitigate bias and improving fairness. Finally, we will study the impact that DEMV have on the fairness of the full pipeline
f recommender systems that embed a multi-class classifier.
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Table 9
Evaluation results for all binary datasets and methods with one sensitive variables.

Data Method SP EO ZO Loss DI Acc H-Mean

Adult

No one 0.139 ± 0.017 0.104 ± 0.063 0.094 ± 0.033 0.34 ± 0.062 0.835 ± 0.007 0.659 ± 0.054
Blackbox 0.061 ± 0.021 0.253 ± 0.065 0.094 ± 0.033 0.659 ± 0.045 0.835 ± 0.007 0.802 ± 0.032
EG 0.02 ± 0.015 0.238 ± 0.072 0.078 ± 0.035 0.892 ± 0.079 0.827 ± 0.008 0.868 ± 0.026
Grid 0.066 ± 0.021 0.164 ± 0.074 0.09 ± 0.033 0.662 ± 0.11 0.833 ± 0.005 0.818 ± 0.039
DEMV 0.094 ± 0.023 0.135 ± 0.062 0.093 ± 0.03 0.57 ± 0.098 0.834 ± 0.006 0.787 ± 0.044

Compas

No one 0.217 ± 0.067 0.759 ± 0.499 0.041 ± 0.033 0.727 ± 0.066 0.67 ± 0.019 0.61 ± 0.216
Blackbox 0.064 ± 0.048 0.112 ± 0.05 0.041 ± 0.033 0.831 ± 0.114 0.67 ± 0.019 0.84 ± 0.037
EG 0.035 ± 0.027 0.158 ± 0.08 0.035 ± 0.028 0.947 ± 0.039 0.662 ± 0.015 0.857 ± 0.022
Grid 0.183 ± 0.044 0.442 ± 0.172 0.051 ± 0.036 0.731 ± 0.07 0.657 ± 0.023 0.706 ± 0.081
DEMV 0.117 ± 0.053 0.212 ± 0.154 0.037 ± 0.028 0.832 ± 0.068 0.665 ± 0.018 0.807 ± 0.066

German

No one 0.166 ± 0.105 0.549 ± 0.359 0.112 ± 0.084 0.798 ± 0.125 0.741 ± 0.045 0.676 ± 0.19
Blackbox 0.025 ± 0.026 0.191 ± 0.108 0.099 ± 0.069 0.963 ± 0.038 0.741 ± 0.028 0.864 ± 0.025
EG 0.084 ± 0.056 0.641 ± 1.016 0.085 ± 0.091 0.897 ± 0.068 0.746 ± 0.042 0.78 ± 0.139
Grid 0.133 ± 0.072 1.395 ± 1.629 0.1 ± 0.096 0.843 ± 0.083 0.746 ± 0.038 0.76 ± 0.175
DEMV 0.119 ± 0.088 0.563 ± 0.419 0.098 ± 0.077 0.851 ± 0.102 0.748 ± 0.039 0.737 ± 0.112

Mean

No one 0.174 ± 0.04 0.471 ± 0.334 0.082 ± 0.037 0.622 ± 0.247 0.749 ± 0.083 0.648 ± 0.034
Blackbox 0.05 ± 0.022 0.185 ± 0.071 0.078 ± 0.032 0.818 ± 0.152 0.749 ± 0.083 0.835 ± 0.031
EG 0.046 ± 0.033 0.346 ± 0.259 0.066 ± 0.027 0.912 ± 0.03 0.745 ± 0.083 0.835 ± 0.048
Grid 0.127 ± 0.059 0.667 ± 0.646 0.08 ± 0.026 0.745 ± 0.091 0.745 ± 0.088 0.761 ± 0.056
DEMV 0.11 ± 0.014 0.303 ± 0.228 0.076 ± 0.034 0.751 ± 0.157 0.749 ± 0.085 0.777 ± 0.036

Table 10
Evaluation results for all binary datasets and methods with two sensitive variables.

Data Method SP EO ZO Loss DI Acc H-Mean

Adult

No one 0.17 ± 0.017 0.17 ± 0.136 0.156 ± 0.01 0.174 ± 0.071 0.835 ± 0.007 0.455 ± 0.107
EG 0.021 ± 0.012 0.396 ± 0.101 0.117 ± 0.019 0.871 ± 0.08 0.82 ± 0.005 0.805 ± 0.046
Grid 0.366 ± 0.007 0.52 ± 0.014 0.237 ± 0.012 0.0 ± 0.0 0.771 ± 0.005 0.0 ± 0.0
DEMV 0.1 ± 0.021 0.284 ± 0.112 0.141 ± 0.015 0.475 ± 0.109 0.832 ± 0.004 0.706 ± 0.072

Compas

No one 0.241 ± 0.038 0.55 ± 0.212 0.127 ± 0.047 0.678 ± 0.045 0.67 ± 0.019 0.621 ± 0.13
EG 0.044 ± 0.027 0.161 ± 0.085 0.114 ± 0.048 0.932 ± 0.039 0.644 ± 0.025 0.833 ± 0.029
Grid 0.294 ± 0.235 0.396 ± 0.148 0.276 ± 0.064 0.593 ± 0.198 0.584 ± 0.016 0.592 ± 0.174
DEMV 0.116 ± 0.048 0.185 ± 0.119 0.119 ± 0.042 0.831 ± 0.067 0.662 ± 0.016 0.802 ± 0.046

German

No one 0.206 ± 0.139 0.647 ± 0.41 0.317 ± 0.123 0.743 ± 0.173 0.741 ± 0.046 0.597 ± 0.187
EG 0.116 ± 0.093 0.833 ± 0.764 0.264 ± 0.121 0.86 ± 0.117 0.749 ± 0.039 0.687 ± 0.198
Grid 0.691 ± 0.06 0.811 ± 0.049 0.44 ± 0.108 0.0 ± 0.0 0.67 ± 0.024 0.0 ± 0.0
DEMV 0.148 ± 0.131 0.628 ± 0.373 0.26 ± 0.126 0.81 ± 0.157 0.749 ± 0.036 0.662 ± 0.105

Mean

No one 0.206 ± 0.036 0.456 ± 0.252 0.2 ± 0.102 0.532 ± 0.311 0.749 ± 0.083 0.558 ± 0.09
EG 0.06 ± 0.05 0.463 ± 0.341 0.165 ± 0.086 0.888 ± 0.039 0.738 ± 0.089 0.775 ± 0.077
Grid 0.45 ± 0.212 0.576 ± 0.213 0.318 ± 0.108 0.198 ± 0.342 0.675 ± 0.094 0.197 ± 0.342
DEMV 0.121 ± 0.024 0.366 ± 0.233 0.173 ± 0.076 0.705 ± 0.2 0.748 ± 0.085 0.723 ± 0.072

Table 11
Evaluation results for all binary datasets and methods with three sensitive variables.

Data Method SP EO ZO Loss DI Acc H-Mean

Adult

No one 0.179 ± 0.016 0.248 ± 0.189 0.286 ± 0.077 0.124 ± 0.073 0.835 ± 0.007 0.352 ± 0.138
EG 0.179 ± 0.012 0.259 ± 0.21 0.271 ± 0.063 0.128 ± 0.06 0.829 ± 0.007 0.367 ± 0.115
Grid 0.35 ± 0.112 0.434 ± 0.099 0.312 ± 0.031 0.119 ± 0.251 0.757 ± 0.022 0.207 ± 0.221
DEMV 0.096 ± 0.023 0.325 ± 0.15 0.31 ± 0.06 0.465 ± 0.136 0.821 ± 0.005 0.658 ± 0.105

Compas

No one 0.244 ± 0.045 0.612 ± 0.204 0.351 ± 0.092 0.683 ± 0.055 0.653 ± 0.02 0.56 ± 0.142
EG 0.262 ± 0.038 0.666 ± 0.254 0.361 ± 0.082 0.661 ± 0.046 0.652 ± 0.02 0.468 ± 0.243
Grid 0.215 ± 0.055 0.434 ± 0.141 0.339 ± 0.102 0.707 ± 0.073 0.641 ± 0.015 0.657 ± 0.069
DEMV 0.1 ± 0.045 0.215 ± 0.127 0.323 ± 0.1 0.861 ± 0.06 0.648 ± 0.023 0.758 ± 0.061

German

No one 0.191 ± 0.073 0.851 ± 0.504 0.552 ± 0.135 0.786 ± 0.08 0.744 ± 0.042 0.542 ± 0.138
EG 0.236 ± 0.118 0.554 ± 0.281 0.631 ± 0.131 0.717 ± 0.152 0.729 ± 0.033 0.527 ± 0.13
Grid 0.181 ± 0.154 0.404 ± 0.171 0.565 ± 0.179 0.775 ± 0.191 0.694 ± 0.034 0.593 ± 0.124
DEMV 0.188 ± 0.07 0.831 ± 0.476 0.512 ± 0.157 0.786 ± 0.076 0.747 ± 0.034 0.536 ± 0.18

Mean

No one 0.205 ± 0.035 0.57 ± 0.304 0.396 ± 0.139 0.531 ± 0.356 0.744 ± 0.091 0.485 ± 0.115
EG 0.226 ± 0.042 0.493 ± 0.21 0.421 ± 0.187 0.502 ± 0.325 0.737 ± 0.089 0.454 ± 0.081
Grid 0.249 ± 0.089 0.424 ± 0.017 0.405 ± 0.139 0.534 ± 0.361 0.697 ± 0.058 0.486 ± 0.243
DEMV 0.128 ± 0.052 0.457 ± 0.329 0.382 ± 0.113 0.704 ± 0.21 0.739 ± 0.087 0.651 ± 0.111
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Table 12
Evaluation results for binary datasets using Gradient Boosting classifier.

Data Method SP EO ZO Loss DI Acc H-Mean

Adult

No one 0.154 ± 0.017 0.225 ± 0.123 0.158 ± 0.009 0.175 ± 0.073 0.833 ± 0.006 0.454 ± 0.099
EG 0.166 ± 0.013 0.438 ± 0.298 0.155 ± 0.012 0.062 ± 0.059 0.829 ± 0.006 0.205 ± 0.175
Grid 0.156 ± 0.013 0.16 ± 0.13 0.16 ± 0.01 0.151 ± 0.067 0.832 ± 0.007 0.421 ± 0.098
DEMV 0.099 ± 0.022 0.299 ± 0.144 0.145 ± 0.014 0.443 ± 0.118 0.831 ± 0.005 0.684 ± 0.084

Compas

No one 0.234 ± 0.039 0.185 ± 0.047 0.092 ± 0.035 0.546 ± 0.059 0.689 ± 0.019 0.722 ± 0.035
EG 0.207 ± 0.042 0.164 ± 0.047 0.08 ± 0.033 0.594 ± 0.072 0.686 ± 0.018 0.746 ± 0.04
Grid 0.208 ± 0.041 0.166 ± 0.046 0.083 ± 0.042 0.591 ± 0.072 0.686 ± 0.019 0.744 ± 0.038
DEMV 0.179 ± 0.04 0.136 ± 0.043 0.098 ± 0.039 0.632 ± 0.069 0.687 ± 0.017 0.765 ± 0.035

Mean

No one 0.194 ± 0.057 0.205 ± 0.028 0.125 ± 0.047 0.361 ± 0.262 0.761 ± 0.102 0.588 ± 0.19
EG 0.186 ± 0.029 0.301 ± 0.194 0.118 ± 0.053 0.328 ± 0.376 0.758 ± 0.101 0.476 ± 0.383
Grid 0.182 ± 0.037 0.163 ± 0.004 0.122 ± 0.054 0.371 ± 0.311 0.759 ± 0.103 0.582 ± 0.228
DEMV 0.139 ± 0.057 0.218 ± 0.115 0.122 ± 0.033 0.538 ± 0.134 0.759 ± 0.102 0.724 ± 0.057

Table 13
Evaluation results for binary datasets using Support Vector Machines classifier.

Data Method SP EO ZO Loss DI Acc H-Mean

Adult

No one 0.165 ± 0.013 0.185 ± 0.133 0.167 ± 0.009 0.151 ± 0.042 0.831 ± 0.005 0.428 ± 0.074
EG 0.162 ± 0.014 0.175 ± 0.126 0.163 ± 0.013 0.132 ± 0.057 0.828 ± 0.006 0.386 ± 0.124
Grid 0.162 ± 0.021 0.208 ± 0.146 0.162 ± 0.017 0.178 ± 0.092 0.828 ± 0.006 0.445 ± 0.155
DEMV 0.096 ± 0.021 0.298 ± 0.155 0.151 ± 0.017 0.431 ± 0.116 0.825 ± 0.006 0.674 ± 0.083

Compas

No one 0.191 ± 0.039 0.129 ± 0.029 0.129 ± 0.066 0.523 ± 0.074 0.645 ± 0.021 0.712 ± 0.037
EG 0.196 ± 0.039 0.14 ± 0.032 0.132 ± 0.048 0.559 ± 0.073 0.643 ± 0.02 0.722 ± 0.033
Grid 0.179 ± 0.037 0.134 ± 0.044 0.139 ± 0.06 0.588 ± 0.072 0.646 ± 0.019 0.735 ± 0.036
DEMV 0.121 ± 0.039 0.123 ± 0.049 0.122 ± 0.053 0.67 ± 0.094 0.632 ± 0.019 0.768 ± 0.038

Mean

No one 0.178 ± 0.018 0.157 ± 0.04 0.148 ± 0.027 0.337 ± 0.263 0.738 ± 0.132 0.57 ± 0.201
EG 0.179 ± 0.024 0.158 ± 0.025 0.148 ± 0.022 0.346 ± 0.302 0.736 ± 0.131 0.554 ± 0.238
Grid 0.17 ± 0.012 0.171 ± 0.052 0.151 ± 0.016 0.383 ± 0.29 0.737 ± 0.129 0.59 ± 0.205
DEMV 0.108 ± 0.018 0.21 ± 0.124 0.136 ± 0.021 0.55 ± 0.169 0.728 ± 0.136 0.721 ± 0.066
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Appendix A. Detailed results of generative strategies’ comparison

In the following, we report the detailed results of the evaluation of DEMV’s generative strategies. For each dataset and for each
method, we report the mean and standard deviation of all metrics. In addition, we report the mean and standard deviation of the
H-Mean computed from the obtained values. Finally, we also report the overall means and standard deviations of all the values
obtained by each method in each experiment. For each dataset, we highlight in boldface the best value of each metric

In particular, Table 7 shows the results for binary datasets, while Table 8 describes the results for multi-class datasets.
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Table 14
Evaluation results for binary datasets using Neural Network classifier.

Data Method SP EO ZO Loss DI Acc H-Mean

Adult

No one 0.185 ± 0.031 0.23 ± 0.174 0.17 ± 0.013 0.17 ± 0.074 0.819 ± 0.008 0.441 ± 0.133
EG Not applicable
Grid Not applicable
DEMV 0.144 ± 0.028 0.24 ± 0.136 0.16 ± 0.017 0.315 ± 0.101 0.815 ± 0.006 0.6 ± 0.096

Compas

No one 0.214 ± 0.053 0.193 ± 0.075 0.089 ± 0.061 0.583 ± 0.068 0.652 ± 0.017 0.727 ± 0.045
EG Not applicable
Grid Not applicable
DEMV 0.136 ± 0.046 0.15 ± 0.053 0.12 ± 0.059 0.719 ± 0.077 0.651 ± 0.017 0.779 ± 0.035

Mean

No one 0.2 ± 0.021 0.212 ± 0.026 0.13 ± 0.057 0.376 ± 0.292 0.736 ± 0.118 0.584 ± 0.202
EG Not applicable
Grid Not applicable
DEMV 0.14 ± 0.006 0.195 ± 0.064 0.14 ± 0.028 0.517 ± 0.286 0.733 ± 0.116 0.69 ± 0.127

Table 15
Evaluation results for all multi-class datasets and methods using one sensitive variables.

Data Method SP EO ZO Loss DI Acc H-Mean

CMC

No one 0.188 ± 0.15 0.305 ± 0.231 0.122 ± 0.081 0.51 ± 0.282 0.521 ± 0.039 0.6 ± 0.166
Blackbox 0.125 ± 0.1 0.275 ± 0.169 0.098 ± 0.08 0.539 ± 0.308 0.515 ± 0.042 0.606 ± 0.185
EG 0.162 ± 0.128 0.292 ± 0.193 0.111 ± 0.074 0.536 ± 0.279 0.505 ± 0.038 0.62 ± 0.138
Grid 0.089 ± 0.086 0.278 ± 0.231 0.105 ± 0.057 0.748 ± 0.154 0.501 ± 0.04 0.699 ± 0.131
DEMV 0.088 ± 0.072 0.254 ± 0.146 0.092 ± 0.072 0.641 ± 0.224 0.516 ± 0.038 0.687 ± 0.107

Crime

No one 0.389 ± 0.082 0.329 ± 0.113 0.069 ± 0.049 0.182 ± 0.076 0.497 ± 0.028 0.409 ± 0.109
Blackbox 0.425 ± 0.074 0.884 ± 0.314 0.069 ± 0.049 0.097 ± 0.082 0.497 ± 0.028 0.186 ± 0.118
EG 0.39 ± 0.084 0.332 ± 0.112 0.066 ± 0.05 0.179 ± 0.077 0.496 ± 0.03 0.403 ± 0.118
Grid 0.3 ± 0.111 0.399 ± 0.135 0.117 ± 0.06 0.336 ± 0.182 0.433 ± 0.039 0.487 ± 0.124
DEMV 0.253 ± 0.064 0.317 ± 0.109 0.062 ± 0.034 0.377 ± 0.106 0.47 ± 0.029 0.568 ± 0.063

Drug

No one 0.264 ± 0.121 0.308 ± 0.236 0.142 ± 0.076 0.343 ± 0.216 0.68 ± 0.025 0.542 ± 0.183
Blackbox 0.441 ± 0.144 0.806 ± 0.58 0.145 ± 0.073 0.095 ± 0.047 0.683 ± 0.025 0.268 ± 0.087
EG 0.246 ± 0.107 0.267 ± 0.135 0.137 ± 0.093 0.371 ± 0.193 0.68 ± 0.026 0.583 ± 0.153
Grid 0.26 ± 0.117 0.298 ± 0.245 0.134 ± 0.091 0.336 ± 0.201 0.683 ± 0.025 0.541 ± 0.189
DEMV 0.128 ± 0.083 0.218 ± 0.112 0.126 ± 0.058 0.585 ± 0.199 0.678 ± 0.026 0.72 ± 0.091

Law

No one 0.26 ± 0.04 0.31 ± 0.038 0.072 ± 0.04 0.441 ± 0.128 0.521 ± 0.01 0.61 ± 0.062
Blackbox 0.179 ± 0.035 0.231 ± 0.093 0.072 ± 0.04 0.408 ± 0.206 0.521 ± 0.01 0.584 ± 0.119
EG 0.231 ± 0.048 0.264 ± 0.044 0.072 ± 0.037 0.487 ± 0.134 0.521 ± 0.009 0.64 ± 0.064
Grid 0.176 ± 0.133 0.228 ± 0.149 0.104 ± 0.093 0.626 ± 0.289 0.503 ± 0.013 0.67 ± 0.135
DEMV 0.103 ± 0.024 0.126 ± 0.039 0.06 ± 0.03 0.757 ± 0.056 0.518 ± 0.011 0.76 ± 0.02

Park

No one 0.221 ± 0.042 0.207 ± 0.055 0.084 ± 0.064 0.473 ± 0.075 0.503 ± 0.029 0.643 ± 0.046
Blackbox 0.21 ± 0.092 0.381 ± 0.2 0.087 ± 0.057 0.334 ± 0.164 0.504 ± 0.024 0.496 ± 0.148
EG 0.216 ± 0.051 0.23 ± 0.072 0.171 ± 0.079 0.461 ± 0.091 0.49 ± 0.022 0.622 ± 0.056
Grid 0.221 ± 0.056 0.228 ± 0.05 0.172 ± 0.077 0.454 ± 0.11 0.493 ± 0.024 0.619 ± 0.064
DEMV 0.111 ± 0.054 0.157 ± 0.043 0.085 ± 0.05 0.697 ± 0.121 0.502 ± 0.022 0.728 ± 0.037

Wine

No one 0.342 ± 0.165 1.067 ± 0.734 0.043 ± 0.033 0.544 ± 0.172 0.56 ± 0.02 0.607 ± 0.133
Blackbox 0.056 ± 0.043 0.192 ± 0.132 0.048 ± 0.029 0.675 ± 0.223 0.561 ± 0.02 0.735 ± 0.123
EG 0.338 ± 0.17 1.075 ± 0.756 0.043 ± 0.036 0.552 ± 0.179 0.56 ± 0.019 0.624 ± 0.104
Grid 0.363 ± 0.206 0.761 ± 0.233 0.204 ± 0.184 0.453 ± 0.346 0.498 ± 0.043 0.38 ± 0.196
DEMV 0.195 ± 0.078 0.84 ± 0.642 0.033 ± 0.025 0.737 ± 0.077 0.545 ± 0.022 0.628 ± 0.186

Mean

No one 0.277 ± 0.075 0.421 ± 0.319 0.089 ± 0.037 0.416 ± 0.134 0.547 ± 0.069 0.568 ± 0.085
Blackbox 0.239 ± 0.159 0.462 ± 0.305 0.087 ± 0.033 0.358 ± 0.234 0.547 ± 0.07 0.479 ± 0.211
EG 0.264 ± 0.084 0.41 ± 0.328 0.1 ± 0.048 0.431 ± 0.139 0.542 ± 0.072 0.582 ± 0.09
Grid 0.235 ± 0.096 0.365 ± 0.204 0.139 ± 0.041 0.492 ± 0.164 0.518 ± 0.085 0.566 ± 0.121
DEMV 0.146 ± 0.064 0.319 ± 0.264 0.076 ± 0.032 0.632 ± 0.14 0.538 ± 0.073 0.682 ± 0.072

Appendix B. Detailed results for binary classification

In the following, we report the charts and the detailed results for binary classification. Concerning the experiment with one
ensitive variable we report the mean of the measures of both experiments taking each sensitive variable singularly.

Fig. 12 reports the means and standard deviations obtained in all three experiments. As noticed above, EG is the method
erforming better when one or two sensitive variables are involved, while it is not able to manage groups identified by three
ensitive variables.

Tables 9, 10, and 11 reports the detailed results for each dataset. For each dataset, we highlight in boldface the best value of
ach metric whose differences are statistically significant. As mentioned above, we like to remark that when dealing with a binary
ataset with one single sensitive variable, DEMV coincides with the Sampling method of Kamiran and Calders (2012).
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Fig. 12. Comparison of DEMV with the baselines in binary classification.

Fig. 13 reports instead the overall mean and standard deviation of all the metrics computed in the experiments involving more
omplex classifiers. It can be seen how, differently from the experiments involving a Logistic Regression model, DEMV overcomes
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Fig. 13. Comparison of DEMV with the baselines in binary classification using other classifiers.

the other baselines in all the experiments, with the only exception of EO with SVM in which the best method is EG. As already said,
we like to remark that EG and Grid cannot be applied with a Neural Network model.
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Table 16
Evaluation results for all multi-class datasets and methods using two sensitive variables.

Data Method SP EO ZO Loss DI Acc H-Mean

CMC

No one 0.126 ± 0.034 0.219 ± 0.118 0.33 ± 0.155 0.494 ± 0.128 0.521 ± 0.04 0.62 ± 0.058
EG 0.107 ± 0.045 0.218 ± 0.15 0.35 ± 0.171 0.543 ± 0.173 0.509 ± 0.035 0.617 ± 0.081
Grid 0.079 ± 0.049 0.241 ± 0.109 0.26 ± 0.176 0.815 ± 0.115 0.445 ± 0.049 0.679 ± 0.062
DEMV 0.056 ± 0.029 0.206 ± 0.191 0.233 ± 0.102 0.663 ± 0.157 0.512 ± 0.038 0.694 ± 0.074

Crime

No one 0.339 ± 0.051 0.442 ± 0.139 0.209 ± 0.07 0.09 ± 0.066 0.497 ± 0.029 0.261 ± 0.108
EG 0.332 ± 0.052 0.458 ± 0.166 0.212 ± 0.084 0.091 ± 0.074 0.493 ± 0.029 0.252 ± 0.139
Grid 0.217 ± 0.077 0.335 ± 0.091 0.318 ± 0.077 0.445 ± 0.136 0.34 ± 0.042 0.515 ± 0.039
DEMV 0.202 ± 0.049 0.32 ± 0.138 0.164 ± 0.044 0.365 ± 0.143 0.441 ± 0.028 0.542 ± 0.076

Drug

No one 0.299 ± 0.055 0.319 ± 0.15 0.335 ± 0.103 0.142 ± 0.086 0.68 ± 0.026 0.357 ± 0.144
EG 0.272 ± 0.047 0.23 ± 0.118 0.375 ± 0.087 0.198 ± 0.068 0.681 ± 0.032 0.448 ± 0.073
Grid 0.198 ± 0.057 0.193 ± 0.073 0.331 ± 0.101 0.356 ± 0.182 0.653 ± 0.025 0.574 ± 0.104
DEMV 0.148 ± 0.047 0.17 ± 0.072 0.337 ± 0.109 0.486 ± 0.13 0.675 ± 0.025 0.662 ± 0.062

Law

No one 0.2 ± 0.027 0.2 ± 0.029 0.164 ± 0.03 0.502 ± 0.072 0.521 ± 0.01 0.655 ± 0.033
EG 0.248 ± 0.031 0.308 ± 0.043 0.184 ± 0.027 0.456 ± 0.076 0.509 ± 0.013 0.61 ± 0.033
Grid 0.3 ± 0.057 0.359 ± 0.09 0.193 ± 0.026 0.351 ± 0.086 0.508 ± 0.013 0.546 ± 0.067
DEMV 0.041 ± 0.028 0.145 ± 0.063 0.159 ± 0.022 0.887 ± 0.077 0.512 ± 0.011 0.77 ± 0.019

Park

No one 0.208 ± 0.041 0.218 ± 0.072 0.246 ± 0.067 0.424 ± 0.089 0.503 ± 0.026 0.603 ± 0.05
EG 0.272 ± 0.03 0.216 ± 0.041 0.324 ± 0.107 0.185 ± 0.044 0.481 ± 0.012 0.424 ± 0.053
Grid 0.125 ± 0.031 0.127 ± 0.038 0.446 ± 0.063 0.617 ± 0.081 0.463 ± 0.019 0.631 ± 0.025
DEMV 0.062 ± 0.048 0.073 ± 0.046 0.211 ± 0.047 0.809 ± 0.136 0.493 ± 0.024 0.746 ± 0.042

Wine

No one 0.322 ± 0.039 0.768 ± 0.185 0.146 ± 0.053 0.534 ± 0.048 0.56 ± 0.021 0.461 ± 0.117
EG 0.189 ± 0.066 0.35 ± 0.163 0.178 ± 0.08 0.692 ± 0.096 0.541 ± 0.021 0.649 ± 0.066
Grid 0.153 ± 0.042 0.616 ± 0.234 0.425 ± 0.055 0.77 ± 0.049 0.435 ± 0.021 0.535 ± 0.085
DEMV 0.106 ± 0.038 0.478 ± 0.264 0.078 ± 0.03 0.858 ± 0.047 0.519 ± 0.018 0.676 ± 0.177

Mean

No one 0.249 ± 0.084 0.361 ± 0.219 0.238 ± 0.081 0.364 ± 0.196 0.547 ± 0.069 0.493 ± 0.16
EG 0.237 ± 0.078 0.297 ± 0.096 0.27 ± 0.089 0.361 ± 0.238 0.536 ± 0.074 0.505 ± 0.16
Grid 0.179 ± 0.078 0.312 ± 0.172 0.329 ± 0.096 0.559 ± 0.205 0.474 ± 0.104 0.58 ± 0.063
DEMV 0.102 ± 0.063 0.232 ± 0.145 0.197 ± 0.087 0.678 ± 0.214 0.525 ± 0.079 0.677 ± 0.081

Table 17
Evaluation results for all multi-class datasets and methods using three sensitive variables.

Data Method SP EO ZO Loss DI Acc H-Mean

CMC

No one 0.148 ± 0.039 0.283 ± 0.141 0.305 ± 0.143 0.353 ± 0.12 0.497 ± 0.042 0.54 ± 0.095
EG 0.134 ± 0.047 0.27 ± 0.108 0.346 ± 0.114 0.427 ± 0.141 0.489 ± 0.038 0.574 ± 0.073
Grid 0.065 ± 0.057 0.237 ± 0.116 0.277 ± 0.196 0.854 ± 0.128 0.432 ± 0.043 0.673 ± 0.066
DEMV 0.031 ± 0.019 0.326 ± 0.235 0.274 ± 0.122 0.695 ± 0.189 0.489 ± 0.036 0.656 ± 0.112

Crime

No one 0.267 ± 0.066 0.435 ± 0.152 0.371 ± 0.097 0.176 ± 0.161 0.504 ± 0.035 0.336 ± 0.203
EG 0.258 ± 0.072 0.459 ± 0.215 0.413 ± 0.128 0.171 ± 0.17 0.493 ± 0.04 0.307 ± 0.242
Grid 0.141 ± 0.058 0.539 ± 0.229 0.381 ± 0.074 0.159 ± 0.178 0.309 ± 0.028 0.218 ± 0.233
DEMV 0.149 ± 0.074 0.291 ± 0.133 0.349 ± 0.048 0.498 ± 0.226 0.437 ± 0.03 0.571 ± 0.096

Drug

No one 0.299 ± 0.045 0.293 ± 0.152 0.331 ± 0.099 0.144 ± 0.086 0.67 ± 0.029 0.36 ± 0.142
EG 0.286 ± 0.056 0.236 ± 0.124 0.366 ± 0.067 0.172 ± 0.054 0.671 ± 0.042 0.419 ± 0.065
Grid 0.207 ± 0.038 0.278 ± 0.14 0.295 ± 0.092 0.338 ± 0.155 0.64 ± 0.025 0.546 ± 0.147
DEMV 0.142 ± 0.055 0.178 ± 0.068 0.362 ± 0.093 0.504 ± 0.169 0.66 ± 0.033 0.659 ± 0.072

Law

No one 0.2 ± 0.027 0.201 ± 0.028 0.165 ± 0.03 0.502 ± 0.071 0.52 ± 0.01 0.655 ± 0.032
EG 0.225 ± 0.03 0.238 ± 0.032 0.172 ± 0.031 0.457 ± 0.072 0.517 ± 0.012 0.628 ± 0.034
Grid 0.278 ± 0.091 0.359 ± 0.116 0.189 ± 0.028 0.408 ± 0.189 0.505 ± 0.016 0.566 ± 0.089
DEMV 0.042 ± 0.029 0.144 ± 0.064 0.159 ± 0.022 0.885 ± 0.078 0.512 ± 0.011 0.769 ± 0.019

Wine

No one 0.434 ± 0.049 1.513 ± 0.308 0.163 ± 0.07 0.448 ± 0.049 0.546 ± 0.019 0.538 ± 0.063
EG 0.419 ± 0.049 1.453 ± 0.294 0.169 ± 0.07 0.463 ± 0.051 0.541 ± 0.018 0.524 ± 0.071
Grid 0.057 ± 0.043 0.101 ± 0.045 0.429 ± 0.063 0.76 ± 0.125 0.398 ± 0.022 0.642 ± 0.041
DEMV 0.097 ± 0.04 0.593 ± 0.287 0.109 ± 0.048 0.877 ± 0.051 0.508 ± 0.02 0.577 ± 0.192

Mean

No one 0.27 ± 0.109 0.545 ± 0.548 0.267 ± 0.097 0.325 ± 0.16 0.547 ± 0.071 0.486 ± 0.135
EG 0.264 ± 0.104 0.531 ± 0.524 0.293 ± 0.115 0.338 ± 0.153 0.542 ± 0.075 0.49 ± 0.128
Grid 0.15 ± 0.094 0.303 ± 0.162 0.314 ± 0.094 0.504 ± 0.293 0.457 ± 0.124 0.529 ± 0.182
DEMV 0.092 ± 0.055 0.306 ± 0.177 0.251 ± 0.113 0.692 ± 0.19 0.521 ± 0.083 0.646 ± 0.08

Finally, Tables 12, 13, and 14 reports the detailed results for each dataset in the experiments involving, respectively Gradient
oosting, SVM and Neural Network. For each dataset, we highlight in boldface the best value of each metric whose differences are
tatistically significant.
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Table 18
Evaluation results for multi-class datasets using Gradient Boosting classifier.

Data Method SP EO ZO Loss DI Acc H-Mean

CMC

No one 0.09 ± 0.053 0.178 ± 0.107 0.279 ± 0.127 0.656 ± 0.177 0.557 ± 0.04 0.696 ± 0.062
EG 0.095 ± 0.068 0.183 ± 0.119 0.309 ± 0.153 0.658 ± 0.221 0.546 ± 0.039 0.685 ± 0.086
Grid 0.065 ± 0.043 0.194 ± 0.091 0.195 ± 0.077 0.742 ± 0.138 0.443 ± 0.042 0.693 ± 0.047
DEMV 0.056 ± 0.04 0.192 ± 0.139 0.272 ± 0.146 0.74 ± 0.17 0.559 ± 0.042 0.716 ± 0.061

Law

No one 0.232 ± 0.03 0.221 ± 0.035 0.175 ± 0.025 0.405 ± 0.082 0.536 ± 0.01 0.61 ± 0.045
EG 0.071 ± 0.053 0.167 ± 0.072 0.154 ± 0.026 0.809 ± 0.142 0.527 ± 0.008 0.754 ± 0.039
Grid 0.322 ± 0.071 0.433 ± 0.049 0.161 ± 0.025 0.344 ± 0.157 0.512 ± 0.01 0.522 ± 0.063
DEMV 0.091 ± 0.029 0.15 ± 0.065 0.156 ± 0.02 0.739 ± 0.088 0.526 ± 0.008 0.742 ± 0.025

Mean

No one 0.161 ± 0.1 0.2 ± 0.03 0.227 ± 0.074 0.53 ± 0.177 0.546 ± 0.015 0.653 ± 0.061
EG 0.083 ± 0.017 0.175 ± 0.011 0.231 ± 0.11 0.734 ± 0.107 0.536 ± 0.013 0.72 ± 0.049
Grid 0.194 ± 0.182 0.314 ± 0.169 0.178 ± 0.024 0.543 ± 0.281 0.478 ± 0.049 0.607 ± 0.121
DEMV 0.074 ± 0.025 0.171 ± 0.03 0.214 ± 0.082 0.74 ± 0.001 0.542 ± 0.023 0.729 ± 0.018

Table 19
Evaluation results for multi-class datasets using Support Vector Machines classifier.

Data Method SP EO ZO Loss DI Acc H-Mean

CMC

No one 0.105 ± 0.046 0.174 ± 0.119 0.321 ± 0.18 0.574 ± 0.17 0.543 ± 0.046 0.652 ± 0.077
EG 0.109 ± 0.044 0.16 ± 0.071 0.337 ± 0.158 0.549 ± 0.142 0.546 ± 0.045 0.652 ± 0.067
Grid 0.197 ± 0.068 0.273 ± 0.083 0.295 ± 0.191 0.197 ± 0.22 0.435 ± 0.045 0.302 ± 0.261
DEMV 0.047 ± 0.03 0.218 ± 0.164 0.279 ± 0.128 0.73 ± 0.153 0.546 ± 0.042 0.707 ± 0.062

Law

No one 0.267 ± 0.022 0.241 ± 0.019 0.173 ± 0.031 0.311 ± 0.048 0.533 ± 0.011 0.554 ± 0.035
EG 0.234 ± 0.022 0.207 ± 0.04 0.192 ± 0.03 0.343 ± 0.063 0.525 ± 0.01 0.575 ± 0.044
Grid 0.375 ± 0.024 0.492 ± 0.039 0.159 ± 0.019 0.277 ± 0.04 0.511 ± 0.013 0.482 ± 0.033
DEMV 0.116 ± 0.034 0.134 ± 0.042 0.161 ± 0.02 0.67 ± 0.099 0.523 ± 0.01 0.724 ± 0.031

Mean

No one 0.186 ± 0.115 0.208 ± 0.047 0.247 ± 0.105 0.442 ± 0.186 0.538 ± 0.007 0.603 ± 0.069
EG 0.172 ± 0.088 0.184 ± 0.033 0.264 ± 0.103 0.446 ± 0.146 0.536 ± 0.015 0.613 ± 0.054
Grid 0.286 ± 0.126 0.382 ± 0.155 0.227 ± 0.096 0.237 ± 0.057 0.473 ± 0.054 0.392 ± 0.127
DEMV 0.082 ± 0.049 0.176 ± 0.059 0.22 ± 0.083 0.7 ± 0.042 0.534 ± 0.016 0.716 ± 0.012

Table 20
Evaluation results for multi-class datasets using Neural Network classifier.

Data Method SP EO ZO Loss DI Acc H-Mean

CMC

No one 0.081 ± 0.087 0.149 ± 0.104 0.338 ± 0.195 0.702 ± 0.261 0.542 ± 0.053 0.683 ± 0.098
EG Not applicable
Grid Not applicable
DEMV 0.06 ± 0.059 0.17 ± 0.111 0.293 ± 0.135 0.756 ± 0.171 0.544 ± 0.048 0.717 ± 0.071

Law

No one 0.218 ± 0.04 0.197 ± 0.039 0.168 ± 0.03 0.436 ± 0.085 0.531 ± 0.01 0.629 ± 0.047
EG Not applicable
Grid Not applicable
DEMV 0.096 ± 0.044 0.138 ± 0.06 0.125 ± 0.032 0.721 ± 0.129 0.519 ± 0.01 0.739 ± 0.04

Mean

No one 0.15 ± 0.097 0.173 ± 0.034 0.253 ± 0.12 0.569 ± 0.188 0.536 ± 0.008 0.656 ± 0.038
EG Not applicable
Grid Not applicable
DEMV 0.078 ± 0.025 0.154 ± 0.023 0.209 ± 0.119 0.738 ± 0.025 0.532 ± 0.018 0.728 ± 0.016

Appendix C. Detailed results for multi-class classification

In the following we report the tables describing the detailed results of experiments involving multi-class datasets. For each dataset
nd for each method, we report the mean and standard deviation of all metrics. In addition, we report the mean and standard
eviation of the H-Mean computed from the obtained values. Finally, we also report the overall means and standard deviations of
ll the values obtained by each method in each experiment. We split the results among experiments involving one, two, and three
ensitive variables and experiments with more complex classifiers. For each dataset, we highlight in boldface the best value of each
etric whose differences are statistically significant.

In particular, Table 15 reports the results of experiments involving one sensitive variable, Table 16 reports the results of
xperiments with two sensitive variables, and Table 17 shows the results of experiments with three sensitive variables.

Finally, Tables 18, 19, and 20 reports the detailed results for each dataset of the experiments involving respectively Gradient
30
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Table 21
ANOVA tables for binary datasets.

(a) One sensitive variable

DF SS MS F p-value

Statistical Parity

C(method) 4.0 153.413 38.353 40.894 0.0
Residual 2405.0 2255.587 0.938

Equalized Odds

C(method) 4.0 57.828 14.457 12.001 0.0
Residual 670.0 807.154 1.205

Zero–one Loss

C(method) 4.0 2.999 0.75 0.749 0.558
Residual 2405.0 2406.001 1.00

Disparate Impact

C(method) 4.0 108.786 27.197 28.436 0.0
Residual 2405.0 2300.214 0.956

Accuracy

C(method) 4.0 0.453 0.113 0.113 0.978
Residual 2405.0 2408.547 1.001

H-Mean

C(method) 3.0 1.378 0.459 24.349 0.0
Residual 366.0 6.906 0.019

(b) Two sensitive variables

DF SS MS F p-value

Statistical Parity

C(method) 3.0 42.582 14.194 25.563 0.0
Residual 89.0 49.418 0.555

Equalized Odds

C(method) 3.0 8.884 2.961 3.365 0.026
Residual 49.0 43.116 0.880

Zero One Loss

C(method) 3.0 24.807 8.269 10.953 0.0
Residual 89.0 67.193 0.755

Disparate Impact

C(method) 3.0 44.572 14.857 27.881 0.0
Residual 89.0 47.428 0.533

Accuracy

C(method) 3.0 14.831 4.944 5.702 0.001
Residual 89.0 77.169 0.867

H-Mean

C(method) 3.0 6.423 2.141 77.032 0.0
Residual 276.0 7.671 0.028

(c) Three sensitive variables

DF SS MS F p-value

Statistical Parity

C(method) 3.0 9.643 3.214 3.474 0.019
Residual 89.0 82.357 0.925

Equalized Odds

C(method) 3.0 19.087 6.362 4.388 0.01
Residual 38.0 55.102 1.450

Zero One Loss

C(method) 3.0 0.432 0.144 0.14 0.936
Residual 89.0 91.568 1.029

Disparate Impact

C(method) 3.0 1.196 0.399 0.391 0.76
Residual 89.0 90.804 1.020

(continued on next page)
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Table 21 (continued).
Accuracy

C(method) 3.0 7.084 2.361 2.475 0.067
Residual 89.0 84.916 0.954

H-Mean

C(method) 3.0 1.038 0.346 12.147 0.0
Residual 276.0 7.858 0.028

Table 22
ANOVA tables for multi-class datasets.

(a) One sensitive variable

DF SS MS F p-value

Statistical Parity

C(method) 4.0 7.402 1.850 1.86 0.016
Residual 651.0 647.598 0.995

Equalized Odds

C(method) 4.0 13.725 3.431 1.326 0.262
Residual 184.0 476.038 2.587

Zero–one Loss

C(method) 4.0 50.71 12.678 13.657 0.0
Residual 651.0 604.29 0.928

Disparate Impact

C(method) 4.0 19.447 4.862 4.98 0.001
Residual 651.0 635.553 0.976

Accuracy

C(method) 4.0 4.338 1.084 1.085 0.363
Residual 651.0 650.662 0.999

H-Mean

C(method) 3.0 0.628 0.209 7.547 0.0
Residual 926.0 25.670 0.028

(b) Two sensitive variables

DF SS MS F p-value

Statistical Parity

C(method) 4.0 104.788 26.197 39.255 0.0
Residual 303.0 202.212 0.667

Equalized Odds

C(method) 4.0 19.262 4.816 3.127 0.018
Residual 112.0 172.494 1.540

Zero One Loss

C(method) 4.0 29.399 7.350 8.022 0.0
Residual 303.0 277.601 0.916

Disparate Impact

C(method) 4.0 18.98 4.745 4.992 0.001
Residual 303.0 288.02 0.951

(continued on next page)

Appendix D. ANOVA tables

In the following, we report the ANOVA tables of our experiments. In particular, Table 21 shows the results for binary, and
Table 22 reports the results for multi-class experiments involving sensitive groups identified by a different number of sensitive
variables. Tables 23 and 24 reports instead the results of the ANOVA tests involving more complex classifiers for respectively binary
and multi-class classification. We recall that, in order to be statistically significant the probability value (p-value) most be lower
than 0.05. In this case, the test rejects the null hypothesis of equal mean for all groups.
32



Information Processing and Management 60 (2023) 103226G. d’Aloisio et al.
Table 22 (continued).
Accuracy

C(method) 4.0 17.356 4.339 4.539 0.001
Residual 303.0 289.644 0.956

H-Mean

C(method) 3.0 1.243 0.414 16.59 0.0
Residual 686.0 17.130 0.025

(c) Three sensitive variables

DF SS MS F p-value

Statistical Parity

C(method) 3.0 7.6 2.533 2.582 0.054
Residual 243.0 238.4 0.981

Equalized Odds

C(method) 3.0 9.151 3.050 1.333 0.27
Residual 73.0 167.103 2.289

Zero One Loss

C(method) 3.0 24.773 8.258 9.07 0.0
Residual 243.0 221.227 0.910

Disparate Impact

C(method) 3.0 7.054 2.351 2.391 0.069
Residual 243.0 238.946 0.983

Accuracy

C(method) 3.0 21.399 7.133 7.717 0.0
Residual 243.0 224.601 0.924

H-Mean

C(method) 3.0 0.572 0.191 6.921 0.0
Residual 586.0 16.132 0.028

Table 23
ANOVA tables of binary experiments with other classifiers.

(a) Gradient Boosting

DF SS MS F p-value

Statistical Parity

C(method) 3.0 46.935 15.645 16.768 0.0
Residual 656.0 612.065 0.933

Equalized Odds

C(method) 3.0 10.709 3.570 3.612 0.013
Residual 656.0 648.291 0.988

Zero–one Loss

C(method) 3.0 3074.488 1024.829 2.16 0.092
Residual 385.0 182633.494 474.373

Disparate Impact

C(method) 3.0 77.001 25.667 28.931 0.0
Residual 656.0 581.999 0.887

Accuracy

C(method) 3.0 0.026 0.009 0.009 0.999
Residual 656.0 658.974 1.005

H-Mean

C(method) 3.0 0.385 0.128 46.927 0.0
Residual 656.0 1.793 0.003

(b) Support Vector Machines

DF SS MS F p-value

Statistical Parity

C(method) 3.0 167.808 55.936 74.704 0.0
Residual 656.0 491.192 0.749

(continued on next page)
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Table 23 (continued).
Equalized Odds

C(method) 3.0 6.486 2.162 2.173 0.09
Residual 656.0 652.514 0.995

Zero One Loss

C(method) 3.0 0.008 0.003 1.523 0.207
Residual 656.0 1.159 0.002

Disparate Impact

C(method) 3.0 69.386 23.129 25.733 0.0
Residual 656.0 589.614 0.899

Accuracy

C(method) 3.0 0.404 0.135 0.134 0.94
Residual 656.0 658.596 1.004

H-Mean

C(method) 1.0 0.101 0.101 28.775 0.0
Residual 618.0 2.164 0.004

(c) Neural Networks

DF SS MS F p-value

Statistical Parity

C(method) 1.0 42.363 42.363 45.402 0.0
Residual 618.0 576.637 0.933

Equalized Odds

C(method) 1.0 0.387 0.387 0.386 0.534
Residual 618.0 618.613 1.001

Zero One Loss

C(method) 1.0 349.329 349.329 0.826 0.364
Residual 373.0 157719.633 422.841

Disparate Impact

C(method) 1.0 7.721 7.721 7.806 0.005
Residual 618.0 611.279 0.989

Accuracy

C(method) 1.0 0.02 0.020 0.02 0.886
Residual 618.0 618.98 1.002

H-Mean

C(method) 1.0 0.101 0.101 28.775 0.0
Residual 618.0 2.164 0.004

Table 24
ANOVA tables of multi-class experiments with other classifiers.

(a) Gradient Boosting

DF SS MS F p-value

Statistical Parity

C(method) 3.0 141.392 47.131 59.732 0.0
Residual 656.0 517.608 0.789

Equalized Odds

C(method) 3.0 31.746 10.582 11.067 0.0
Residual 656.0 627.254 0.956

Zero–one Loss

C(method) 3.0 164.678 54.893 0.429 0.732
Residual 203.0 25949.535 127.830

Disparate Impact

C(method) 3.0 67.483 22.494 24.947 0.0
Residual 656.0 591.517 0.902

(continued on next page)
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Table 24 (continued).
Accuracy

C(method) 3.0 62.187 20.729 22.785 0.0
Residual 656.0 596.813 0.910

H-Mean

C(method) 3.0 0.385 0.128 46.927 0.0
Residual 656.0 1.793 0.003

(b) Support Vector Machines

DF SS MS F p-value

Statistical Parity

C(method) 3.0 1.119 0.373 137.255 0.0
Residual 656.0 1.783 0.003

Equalized Odds

C(method) 3.0 0.839 0.280 17.93 0.0
Residual 656.0 10.227 0.016

Zero One Loss

C(method) 3.0 0.051 0.017 1.346 0.258
Residual 656.0 8.290 0.013

Disparate Impact

C(method) 3.0 6.316 2.105 115.033 0.0
Residual 656.0 12.005 0.018

Accuracy

C(method) 3.0 0.074 0.025 22.195 0.0
Residual 656.0 0.731 0.001

H-Mean

C(method) 3.0 2.383 0.794 211.341 0.0
Residual 656.0 2.465 0.004

(c) Neural Networks

DF SS MS F p-value

Statistical Parity

C(method) 1.0 0.098 0.098 30.711 0.0
Residual 618.0 1.975 0.003

Equalized Odds

C(method) 1.0 0.007 0.007 0.892 0.345
Residual 618.0 5.064 0.008

Zero One Loss

C(method) 1.0 0.038 0.038 2.216 0.137
Residual 618.0 10.539 0.017

Disparate Impact

C(method) 1.0 0.556 0.556 23.01 0.0
Residual 618.0 14.938 0.024

Accuracy

C(method) 1.0 0.001 0.001 0.403 0.526
Residual 618.0 0.844 0.001

H-Mean

C(method) 1.0 0.101 0.101 28.775 0.0
Residual 618.0 2.164 0.004
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