
Data Mining
Ranking Models

Basics

by
Giovanni Stilo, PhD.

giovanni.stilo@univaq.it

mailto:giovanni.stilo@univaq.it

• Information Retrieval (IR) is finding material (usually
documents) of an unstructured nature (usually text) that
satisfies an information need from large collections
(usually stored on computers).

• “Usually” text, but can be more: images, videos, data,
services, audio..

• “Usually” unstructured (= no pre-defined model)
but: XML, RDF, html are ”more structured” than txt or pdf

• “Large” collections: how large?? The Web! (The Indexed
Web contains at least 50 billion pages .)

1

Information Retrieval

2

Unstructured vs. structured

3

Library/Book Catalogue

4

Web Search

5

IR Black Box

6

Inside The IR Black Box

7

Boolean Model

• Simple model based on set theory
• First model used in “classic” IR systems
• Queries and documents specified as boolean

expressions :
qprecise semantics
qE.g., q = ka Ù (kb Ú ¬kc)
q(apple Ù (computer Ú ¬red)

• Terms can be present or absent. Thus,
wij {0,1}∈

8

Boolean Model

qq = a Ù (b Ú (¬c)) =
(aÙbÙc) Ú(aÙbÙ(¬c))Ú(aÙ(¬b) Ù(¬c)) (DNF form)

qv(qdnf) = (1,1,1) (1,1,0) (1,0,0)
» Disjunctive Normal Form

» Ex: (apple,computer,red) Ú (apple, computer) Ú (apple)

qv(qcc) = (1,1,0)
» Conjunctive Component

9

Example

qq = a Ù (b Ú (¬c)) =
(aÙbÙc) Ú(aÙbÙ(¬c))Ú(aÙ(¬b) Ù(¬c)) (DNF form)

qv(qdnf) = (1,1,1) (1,1,0) (1,0,0)
» Disjunctive Normal Form

» Ex: (apple,computer,red) Ú (apple, computer) Ú (apple)

qv(qcc) = (1,1,0)
» Conjunctive Component

• Similar/Matching documents
• md1 = [apple apple blue day] => (1,0,0)
• md2 = [apple computer red] => (1,1,1)

• Unmatched documents
• ud1 = [apple red] => (1,0,1)
• ud2 = [day] => (0,0,0)

10

Example

qExpressive power of boolean expressions to
capture information needs and document
semantics is inadequate

qRetrieval based on binary decision criteria (with no
partial match) does not reflect our intuitions
behind relevance adequately

• As a result
qAnswer set (results) contains either too few or too

many documents in response to a user query
qNo ranking of documents

11

Drawbacks of the Boolean Model

• Boolean queries often result in either too few (=0)
or too many (1000s) results.
• Query 1: “standard user dlink 650” → 200,000 hits
• Query 2: “standard user dlink 650 no card found”: 0 hits

• It takes skill to come up with a query that produces
a manageable number of hits.

• With a ranked list of documents, it does not matter
how large the retrieved set is. User will looks at first
results.

12

Problem with Boolean search

13

Vector Model

• We wish to return in order of relevance the
documents most likely to be useful to the searcher
• How can we rank-order the documents in the

collection with respect to a query?
• Assign a score – say in [0, 1] – to each document
• This score measures how well document and query

“match”.

14

Scoring as the basis of ranked retrieval

• We need a way of assigning a score to a
query/document pair
• Let’s start with a one-term query
• If the query term does not occur in the document:

score should be 0
• The more frequent the query term in the

document, the higher the score (should be)
• We will look at a number of alternatives for this.

15

Query-document matching scores

• Model: each document is a bag-of-words
• Representation:

a N-dimensional vector (N=|V|, the dimension of the
vocabulary)
• Weighting schema: coordinate wij of vector dj associated

to document dj is the RELEVANCE of word i in document j
• How do we measure wij ?

16

Vector Weighting Model

• Vector representation doesn’t consider the ordering
of words in a document
• d1: John is quicker than Mary and

d2: Mary is quicker than John
have the same vectors, since we have a coordinate (or
coefficient, or weight) wi for every word i of the
vocabulary, and coordinates are ordered alphabetically
• d1=d2=(wJohn,wis,wMary,wquicker,wthan)

• This is called (as mentioned in previous lectures) the
bag of words model.
• In a sense, this is a step back: the positional index (see

lectures on indexing) was able to distinguish these two
documents.

17

Bag of words vector

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Any column j is a document vector dj.
Each document is represented by a binary vector ∈ {0,1}|V|, wij is either 0 (word i is absent in dj)
or 1 (word i appears in dj)
Number of rows=dimension of vocabulary |V|
Number of columns= dimension of the document collection N

documents
words

Binary term-document matrix

18

• This scheme considers the number of occurrences of
a term in a document:
• Each document is a count vector in ℕv

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Term-document count matrix

19

• The term frequency tft,d of term t in document d is
defined as the number of times that t occurs in d.
• We want to use tf when computing query-document

match scores. But how?
• Raw term frequency is not what we want:

• A document with 10 occurrences of the term may be more
relevant than a document with one occurrence of the term.

• But not 10 times more relevant.

• Relevance does not increase proportionally with term
frequency.
• One possibility is to normalize: tfi

norm = tfi / max j (tf j)

20

Term frequency tf

• The log frequency weight of term t in d is

• 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

î
í
ì >+

=
otherwise 0,

0 tfif, tflog 1
 10 t,dt,d

t,dw

21

Log-frequency weighting

• Score for a document-query pair: sum over terms t in
both q and d:

• Sim(q,d)

• The score is 0 if none of the query terms is present in the
document, and grows when the document includes many of the
query terms, with a high frequency

• However, frequency-based ranking (whether
normalized or log) IS NOT FULLY APPROPRIATE

• WHY??

å ÇÎ
+=

dqt dt) tflog (1 ,

22

Scoring similarity

• With a stop list, you exclude from the dictionary
entirely the commonest words. Intuition:
• They have little semantic content: the, a, and, to, be
• There are a lot of them: ~30% of postings for top 30 words
• Stop word elimination used to be standard in older IR systems.

• But the trend is away from doing this:
• Good compression techniques means the space for including

stopwords in a system is very small
• Good query optimization techniques mean you pay little at query

time for including stop words.
• You need them for:

• Phrase queries: “King of Denmark”
• Various song/books titles, etc.: “Let it be”, “To be or not to be”
• “Relational” queries: “flights to London”vrs “flight from London”

Sec. 2.2.2

23

Stop words

• Rare terms are more informative than frequent terms
• Recall stop words!

• Consider a term in the query that is rare in the collection
(e.g., arachnocentric)

• A document containing this term is very likely to be relevant
to the query “study on arachnocentric people”

• → We want a higher weight for rare terms like
arachnocentric

24

Inverse Document Frequency

• Consider a query term that is frequent in the collection (e.g., high,
increase, line)
• A document containing such a term is more likely to be relevant

than a document that doesn’t, but it’s not a sure indicator of
relevance.

• → For frequent terms, we want lower weights than for rare
terms, since they do not characterize a single document

• We will use document frequency (df) to capture the
intuition that terms appearing in many documents of the
collection should have a lower weight

• df (£ N) = number of documents that contain the term, N=
dimension of the document collection

25

Inverse Document Frequency (1)

• dft is the document frequency of t:
the number of documents in the collection that
contain t
• df is a measure of the informativeness of t

• We define the idf (inverse document frequency) of
t by:

• We use log N/dft instead of N/dft to “dampen” the effect
of idf.

tt N/df log idf 10=

26

Inverse Document Frequency (2)

term dft = # of documents including the term idft
calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.

27

IDF example (N = 1M)

• The tf-idf weight of a term is the product of its tf weight
and its idf weight.

• Best known weighting scheme in information retrieval
• Note: the “-” in tf-idf is a hyphen, not a minus sign!
• Alternative names: tf.idf, tf x idf

• Increases with the number of occurrences within a
document
• Increases with the rarity of the term in the collection

tdt N
dt

df/log)tflog1(w ,,
´+=

28

Scoring Similarity: tf-idf

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued vector of tf-idf weights ∈ R|V|

29

Binary → count → weight matrix

• So we have a |V|-dimensional vector space, one dimension for
each term.

• Terms are axes of the space

• Documents are points or vectors in this space.

• The coordinate of a vector dj on dimension i is the tf-idf weight
of word i in document j.

• Very high-dimensional: hundreds of millions of dimensions
when you apply this to a web search engine

• It is a very sparse vector - most entries are zero (will see later in
this course how to reduce dimensionality).

30

Documents as vectors

dj

X, Y, Z are the 3 dimensions associated to keywords kx, ky, kz
x, y, z are the 3 weights of keywords kx, ky, kz in dj

31

Vector space model (for |V|=3)

t1

t2

t3 D1

D2

D10

D3

D9

D4

D7

D8

D5

D11

D6

32

Documents in Vector Space

• Key idea 1: Do the same for queries: represent them as vectors
in the space

• Key idea 2: Rank documents according to their proximity to the
query in this space

• proximity = similarity of vectors

• proximity ≈ inverse of distance

• Recall: We do this because we want to get away from the
you’re-either-in-or-out Boolean model.

• Rank more relevant documents higher than less relevant
documents

33

Vector Space Scoring Model

• First cut: distance between two points
(= distance between the end points of the two vectors)

• Euclidean distance?

• Euclidean distance is a bad idea . . .
• . . . because Euclidean distance is large for vectors

of different lengths.

d(dj,q) = (wij −wiq)
2

i
∑

34

Vector Space Proximity

The Euclidean distance
between q
and d2 (red dashed line)
is large even though the
distribution of terms in
the query q and the
distribution of
terms in the document
d2 are
very similar (about 50%
gossip, 50% Jealous).
Absolute frequencies
cause the difference.

35

Why Euclidean distance is a bad idea?

• Experiment: take a document d and append it to itself. Call
this document dʹ.

• “Semantically” d and dʹ have the same content

• The Euclidean distance between the two documents can
be quite large (word frequency doubles in d’)

36

Why Euclidean distance is a bad idea?

OB = (1, 1.5)
B

37

Example

• In previous example, the angle between the two
documents is 0.
• Key idea: Rank documents according to angle with query.
• In previous example, the angle is zero, corresponding to

maximum similarity!
• In fact the two documents have the same words, with same

relative weight.

38

Measure the Angle between Documents

• The following two notions are equivalent.
• Rank documents in decreasing order of the angle

between query and document
• Rank documents in increasing order of

cosine(query,document)

• Cosine is a monotonically decreasing function for
the interval [0o, 180o]

39

From angles to cosines

• A vector can be (length-) normalized by dividing each of
its components by its length – for this we use the L2 norm:

• Dividing a vector by its L2 norm makes it a unit (length) vector
• Effect on the two documents d and dʹ (d appended to itself)

from earlier slide:
• they have identical vectors after length-normalization.

å=
i i
xx 2

2



40

Length normalization

åå
å

==

==•=
•

=
V

i i
V

i i

V

i ii

dq

dq

d
d

q
q

dq
dqdq

1
2

1
2

1),cos(











Dot product Unit vectors

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document
cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Cosine-similarity is the cosine of the angle between normalized query end document vectors.

41

Vector Space Model: cosine-similarity

2a

1a 1D

Q
2D

98.0cos
74.0cos

)8.0 ,4.0(
)7.0 ,2.0(
)3.0 ,8.0(

2

1

2

1

=
=

=
=
=

a
a

Q
D
D

1.0

0.8

0.6

0.8

0.4

0.60.4 1.00.2

0.2

D2 is more similar to Q than D1!!

42

Example

A small collection of N=3 documents, |V|=6 words

Compute idf

43

A complete example

Document-term matrix (we use normalized tf, however here
each word appears just once in each document)

tf-idf: multiply tf by idf values

44

A complete example

Query: “new new times”

When computing the tf-idf values for the query terms we divide the frequency by
the maximum frequency (2) to normalize, and multiply with the idf values

We calculate the length (the NORM) of each document vector and of the query:

45

A complete example

Similarity values are computed using cosin-sim formula:

According to the computed similarity values, the final
order in which the documents are presented as result to
the query will be: d1, d2, d3.

åå
å

==

==•=
•

=
V

i i
V

i i

V

i ii

dq

dq

d
d

q
q

dq
dqdq

1
2

1
2

1),cos(











46

A complete example

term SaS PaP WH
affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

How similar are
the novels:
SaS: Sense and
Sensibility
PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

Term frequencies (counts)

Cosine similarity amongst 3 documents

47

Cosine Similarity

Log frequency weighting
term SaS PaP WH

affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

Tf-idf and normalize
term SaS PaP WH

affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588

cos(SaS,PaP) ≈
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0
≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

48

3 documents example contd

