Data Mining

Ranking Models

Basics

by

Giovanni Stilo, PhD.

giovanni.stilo@univaq.it

Information Retrieval

- Information Retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from large collections (usually stored on computers).
- "Usually" text, but can be more: images, videos, data, services, audio..
- "Usually" unstructured (= no pre-defined model) but: XML, RDF, html are "more structured" than txt or pdf
- "Large" collections: how large?? The Web! (The Indexed Web contains at least 50 billion pages .)

Unstructured vs. structured

Library/Book Catalogue

🖉 Spr	inger						
Search					Q		
Home	Subjects	Services	Springer Shop	About us			
	Astronomy		Earth Sciences	(Geography	Physics	
Login fo	Behavioral S	Sciences	Economics		Law	Popular Science	
Please log i	Biomedical	Sciences	Education & La	inguage	Life Sciences	Public Health	
discounts.	Business &	Management	Energy		Materials	Social Sciences	her Business Partners. Make
Don't have	Chemistry		Engineering		Mathematics	Statistics	
Forgot your	Climate		Environmental	Sciences	Medicine	Water	
Log in	Computer S	cience	Food Science &	& Nutrition	Philosophy		

Business Shop

- » Contacts
- » New Books Preview
- » Sales & Campaigns
- » Bulk Discounts
- » Bestsellers
- » Highlights & Subject Catalogs
- » Key Library Titles
- » Just Released Books
- » Prices & Terms
- » Service & Alerts

Subject Catalogs Summer 2020

t... Top

t... Top

Web Search

	Google	
٩		Ļ
	Google Search I'm Feeling Lucky	

IR Black Box

Inside The IR Black Box

Boolean Model

Boolean Model

- Simple model based on set theory
- First model used in "classic" IR systems
- Queries and documents specified as boolean expressions :

precise semantics

$$\Box E.g., q = ka \land (kb \lor \neg kc)$$

□(*apple* ∧ (*computer* ∨ ¬red)

• Terms can be present or absent. Thus, $w_{ij} \in \{0,1\}$

Example

 $\Box q = a \land (b \lor (\neg c)) =$ $(a \land b \land c) \lor (a \land b \land (\neg c)) \lor (a \land (\neg b) \land (\neg c)) (DNF \text{ form})$ $\Box v(qdnf) = (1,1,1) (1,1,0) (1,0,0)$

- » Disjunctive Normal Form
- » Ex: (apple,computer,red) ∨ (apple, computer) ∨ (apple)
- $\Box v(q cc) = (1,1,0)$
- » Conjunctive Component

Example

 $\Box q = a \land (b \lor (\neg c)) =$

 $(a \land b \land c) \lor (a \land b \land (\neg c)) \lor (a \land (\neg b) \land (\neg c))$ (DNF form) $\Box v(qdnf) = (1,1,1) (1,1,0) (1,0,0)$

- » Disjunctive Normal Form
- » Ex: (apple,computer,red) \v (apple, computer) \v (apple)

 $\Box v(q \textbf{cc}) = (1, 1, 0)$

- » Conjunctive Component
- Similar/Matching documents
 - *md1* = [apple apple blue day] => (1,0,0)
 - *md2* = [apple computer red] => (1,1,1)
- Unmatched documents
 - ud1 = [apple red] => (1,0,1)
 - ud2 = [day] => (0,0,0)

Drawbacks of the Boolean Model

- Expressive power of boolean expressions to capture information needs and document semantics is *inadequate*
- Retrieval based on binary decision criteria (with no partial match) does not reflect our intuitions behind relevance adequately
- As a result

 Answer set (results) contains either too few or too many documents in response to a user query
 No ranking of documents

Problem with Boolean search

- Boolean queries often result in either too few (=0) or too many (1000s) results.
 - Query 1: "standard user dlink 650" \rightarrow 200,000 hits
 - Query 2: "standard user dlink 650 no card found": 0 hits
- It takes skill to come up with a query that produces a manageable number of hits.
- With a ranked list of documents, it does not matter how large the retrieved set is. User will looks at first results.

Vector Model

Scoring as the basis of ranked retrieval

- We wish to return *in order of relevance* the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score say in [0, 1] to each document
- This score measures how well document and query "match".

Query-document matching scores

- We need a way of assigning a score to a query/document pair
- Let's start with a one-term query
- If the query term does not occur in the document: score should be 0
- The more frequent the query term in the document, the higher the score (should be)
- We will look at a number of alternatives for this.

Vector Weighting Model

- Model: each document is a bag-of-words
- Representation:

a **N-dimensional vector** (N=|V|, the dimension of the vocabulary)

- Weighting schema: coordinate w_{ij} of vector d_j associated to document d_i is the RELEVANCE of word i in document j
- How do we measure w_{ij} ?

Bag of words vector

- Vector representation doesn't consider the ordering of words in a document
 - d1: John is quicker than Mary and d2: Mary is quicker than John have the same vectors, since we have a coordinate (or coefficient, or weight) w_i for every word *i* of the vocabulary, and coordinates are ordered alphabetically
 - d1=d2=(W_{John}, W_{is}, W_{Mary}, W_{quicker}, W_{than})
- This is called (as mentioned in previous lectures) the bag of words model.
 - In a sense, this is a step back: the positional index (see lectures on indexing) was able to distinguish these two documents.

Binary term-document matrix

			documents			
words	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Any column j is a document vector d_i .

Each document is represented by a binary vector $\in \{0,1\}^{|v|}$, w_{ij} is either 0 (word *i* is absent in d_j)

or 1 (word *i* appears in d_j)

Number of rows=dimension of vocabulary |V|

Number of columns= dimension of the document collection N

Term-document count matrix

- This scheme considers the number of occurrences of a term in a document:
 - Each document is a count vector in \mathbb{N}^{\vee}

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Term frequency tf

- The *term frequency* $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use *tf* when computing query-document match scores. But how?
- *Raw* term frequency is *not* what we want:
 - A document with 10 occurrences of the term may be more relevant than a document with one occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.
- One possibility is to normalize: $tf_i^{norm} = tf_i / \max_i (tf_i)$

Log-frequency weighting

• The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0\\ 0, & \text{otherwise} \end{cases}$$

• 0 \rightarrow 0, 1 \rightarrow 1, 2 \rightarrow 1.3, 10 \rightarrow 2, 1000 \rightarrow 4, etc.

Scoring similarity

- Score for a document-query pair: sum over terms *t* in both *q* and *d*:
- Sim(q,d) = $\sum_{t \in q \cap d} (1 + \log tf_{t,d})$
 - The score is 0 if none of the query terms is present in the document, and grows when the document includes many of the query terms, with a high frequency
- However, frequency-based ranking (whether normalized or log) IS NOT FULLY APPROPRIATE
- WHY??

Stop words

- With a stop list, you exclude from the dictionary entirely **the commonest words**. Intuition:
 - They have little semantic content: *the, a, and, to, be*
 - There are a lot of them: ~30% of postings for top 30 words
 - Stop word elimination used to be standard in older IR systems.
- But the trend is away from doing this:
 - Good compression techniques means the space for including stopwords in a system is very small
 - Good query optimization techniques mean you pay little at query time for including stop words.
 - You need them for:
 - Phrase queries: "King of Denmark"
 - Various song/books titles, etc.: "Let it be", "To be or not to be"
 - "Relational" queries: "flights to London" vrs "flight from London"

Inverse Document Frequency

- Rare terms are more informative than frequent terms
 - Recall stop words!
 - Consider a term in the query that is rare in the collection (e.g., *arachnocentric*)
 - A document containing this term is very likely to be relevant to the query "study on arachnocentric people"
 - → We want a higher weight for rare terms like arachnocentric

Inverse Document Frequency (1)

- Consider a query term that is frequent in the collection (e.g., *high, increase, line*)
 - A document containing such a term is more likely to be relevant than a document that doesn't, but it's not a sure indicator of relevance.
 - → For frequent terms, we want lower weights than for rare terms, since they do not characterize a single document
- We will use <u>document frequency</u> (df) to capture the intuition that terms appearing in many documents of the collection should have a lower weight
- df (≤ N) = number of documents that contain the term, N= dimension of the document collection

Inverse Document Frequency (2)

- df_t is the <u>document</u> frequency of *t*: the number of documents in the collection that contain *t*
 - df is a measure of the informativeness of t
- We define the *idf* (inverse document frequency) of t by:

$$\operatorname{idf}_t = \log_{10} N/\operatorname{df}_t$$

 We use log N/df_t instead of N/df_t to "dampen" the effect of idf.

IDF example (N = 1M)

term	df _t = # of documents including the term	idf _t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

There is one idf value for each term *t* in a collection.

Scoring Similarity: tf-idf

• The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = (1 + \log \mathrm{tf}_{t,d}) \times \log N / \mathrm{df}_t$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Binary \rightarrow count \rightarrow weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|v|}$

Documents as vectors

- So we have a |V|-dimensional vector space, one dimension for each term.
- Terms are axes of the space
- Documents are points or vectors in this space.
- The coordinate of a vector d_j on dimension i is the tf-idf weight of word i in document j.
- Very high-dimensional: hundreds of millions of dimensions when you apply this to a web search engine
- It is a very sparse vector most entries are zero (will see later in this course how to reduce dimensionality).

Vector space model (for |V|=3)

Documents in Vector Space

Vector Space Scoring Model

- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity ≈ inverse of distance
- Recall: We do this because we want to get away from the you're-either-in-or-out Boolean model.
- Rank more relevant documents higher than less relevant documents

Vector Space Proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance?

$$d(d_{j},q) = \sqrt{\sum_{i} (w_{ij} - w_{iq})^{2}}$$

- Euclidean distance is a bad idea . . .
- . . . because Euclidean distance is large for vectors of different lengths.

Why Euclidean distance is a bad idea?

Why Euclidean distance is a bad idea?

- Experiment: take a document d and append it to itself. Call this document d'.
- "Semantically" d and d' have the same content
- The Euclidean distance between the two documents can be quite large (word frequency doubles in d')

Example

Measure the Angle between Documents

- In previous example, the angle between the two documents is 0.
- Key idea: Rank documents according to angle with query.
- In previous example, the angle is zero, corresponding to maximum similarity!
- In fact the two documents have the same words, with same relative weight.

From angles to cosines

- The following two notions are equivalent.
 - Rank documents in <u>decreasing</u> order of the angle between query and document
 - Rank documents in <u>increasing</u> order of cosine(query,document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]

Length normalization

 A vector can be (length-) normalized by dividing each of its components by its length – for this we use the L₂ norm:

$$\left\|\vec{x}\right\|_2 = \sqrt{\sum_i x_i^2}$$

- Dividing a vector by its L₂ norm makes it a unit (length) vector
- Effect on the two documents d and d' (d appended to itself) from earlier slide:
 - they have **identical vectors** after length-normalization.

Vector Space Model: cosine-similarity

 q_i is the tf-idf weight of term *i* in the query d_i is the tf-idf weight of term *i* in the document $\cos(\overrightarrow{q}, \overrightarrow{d})$ is the cosine similarity of \overrightarrow{q} and \overrightarrow{d} ... or, equivalently, the cosine of the angle between \overrightarrow{q} and \overrightarrow{d} .

Cosine-similarity is the cosine of the angle between normalized query end document vectors.

Example

A small collection of N=3 documents, |V|=6 words

d1: "new york times"d2: "new york post"d3: "los angeles times"

Compute idf

angles	log ₂ (3/1)=1.584
los	log ₂ (3/1)=1.584
new	log ₂ (3/2)=0.584
post	log ₂ (3/1)=1.584
times	log ₂ (3/2)=0.584
york	log ₂ (3/2)=0.584

Document-term matrix (we use **normalized tf**, however here each word appears just once in each document)

41	angeles	los	new	post	times	york
ai	0	0	1	0	1	1
d2	0	0	1	1	0	1
d3	1	1	0	0	1	0

tf-idf: multiply tf by idf values

d1	angeles 0	los 0	new 0.584	post 0	times 0.584	york 0.584
d2	0	0	0.584	1.584	0	0.584
d3	1.584	1.584	0	0	0.584	0

Query: "new new times"

When computing the *tf-idf* values for the query terms we divide the frequency by the maximum frequency (2) to normalize, and multiply with the *idf* values

q 0 0 (2/2)*0.584=0.584 0 (1/2)*0.584=0.292 0

We calculate the length (the NORM) of each document vector and of the query:

Length of d1 = $sqrt(0.584^2+0.584^2+0.584^2)=1.011$ Length of d2 = $sqrt(0.584^2+1.584^2+0.584^2)=1.786$ Length of d3 = $sqrt(1.584^2+1.584^2+0.584^2)=2.316$ Length of q = $sqrt(0.584^2+0.292^2)=0.652$

Similarity values are computed using cosin-sim formula:

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \bullet \vec{d}}{\left|\vec{q}\right| \left|\vec{d}\right|} = \frac{\vec{q}}{\left|\vec{q}\right|} \bullet \frac{\vec{d}}{\left|\vec{d}\right|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

 $\begin{aligned} \cos Sim(d1,q) &= (0*0+0*0+0.584*0.584+0*0+0.584*0.292+0.584*0) / (1.011*0.652) = 0.776 \\ \cos Sim(d2,q) &= (0*0+0*0+0.584*0.584+1.584*0+0*0.292+0.584*0) / (1.786*0.652) = 0.292 \\ \cos Sim(d3,q) &= (1.584*0+1.584*0+0*0.584+0*0+0.584*0.292+0*0) / (2.316*0.652) = 0.112 \end{aligned}$

According to the computed similarity values, the final order in which the documents are presented as result to the query will be: d1, d2, d3.

Cosine Similarity

- How similar are
- the novels:
- SaS: Sense and
- Sensibility
- PaP: Pride and
- Prejudice, and
- WH: Wuthering
- Heights?

Cosine similarity amongst 3 documents

term	SaS	PaP	WH		
affection	115	58	20		
ealous	10	7	11		
gossip	2	0	6		
wuthering	0	0	38		
Term frequencies (counts)					

3 documents example contd

Log frequency weighting

term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

Tf-idf and normalize

term	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

```
cos(SaS,PaP) ≈
```

```
0.789 * 0.832 + 0.515 * 0.555 + 0.335 * 0.0 + 0.0 * 0.0

\approx 0.94

\cos(SaS,WH) \approx 0.79

\cos(PaP,WH) \approx 0.69
```